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Abstract. Automated theorem provers are computer programs that
check whether a logical conjecture follows from a set of logical statements.
The conjecture and the statements are expressed in the language of some
formal logic, such as first-order logic. Theorem provers for first-order
logic have been used for automation in proof assistants, verification of
programs, static analysis of networks, and other purposes. However, the
efficient usage of these provers remains challenging. One of the challenges
is the complexity of translating domain problems to first-order logic. Not
only can such translation be cumbersome due to semantic differences
between the domain and the logic, but it might inadvertently result in
problems that provers cannot easily handle.

The work presented in the thesis addresses this challenge by developing
an extension of first-order logic named FOOL. FOOL contains syntactical
features of programming languages and more expressive logics, is friendly
for translation of problems from various domains, and can be efficiently
supported by existing theorem provers. We describe the syntax and se-
mantics of FOOL and present a simple translation from FOOL to plain
first-order logic. We describe an efficient clausal normal form transforma-
tion algorithm for FOOL and based on it implement a support for FOOL
in the Vampire theorem prover. We illustrate the efficient use of FOOL
for program verification by describing a concise encoding of next state
relations of imperative programs in FOOL. We show a usage of features
of FOOL in problems of static analysis of networks. We demonstrate
the efficiency of automated theorem proving in FOOL with an extensive
set of experiments. In these experiments we compare the performance of
Vampire on a large collection of problems from various sources translated
to FOOL and ordinary first-order logic. Finally, we fix the syntax for
FOOL in TPTP, the standard language of first-order theorem provers.

Keywords. Automated theorem proving, first-order logic, clausal nor-
mal form, program analysis, program verification, Vampire, TPTP.
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Introduction

This thesis studies automated theorem proving in first-order logic and
its applications. The history of automated theorem proving in first-order
logic dates back to the early 1950s (see e.g. [22, 26, 37] for a historical
overview). Over the years proof search algorithms and implementations of
automated theorem provers have matured and are now used for practical
applications. Among these applications are static analysis and verification
of software and hardware, automation for proof assistants, knowledge
representation, natural language processing and others.

The efficient usage of first-order theorem provers might be challenging.
One of the challenges is representation of application problems in first-
order logic in a way that is efficient for automated reasoning. Systems that
rely on first-order provers, such as program verification tools and proof
assistants, usually do not deal with first-order logic natively. Instead,
they translate problems in their respective domains (program properties
or formulas in the logic of the proof assistant) to problems in first-order
logic. There could be multiple ways of translating a problem because
of the mismatch between the semantics of the domain and that of first-
order logic. A theorem prover might succeed on the results of some
of these translations and fail on the others. Users of a theorem prover
might find designing a translation that is friendly to the prover to be
a difficult task. Such translation might require solid knowledge of how
theorem provers work and are implemented, something that the users of
the prover might not have. Assessing whether a translation of a certain
problem to first-order logic is good might be difficult as well. Such
assessment can often only be made through tedious experiments with
running theorem provers, configured with different settings, on the results
of the translation. A perfect translation might not necessarily exist,
because different translation might work better in different scenarios.
Furthermore, for some types of problems, their translations to first-order
logic cannot be efficiently handled by a theorem prover at all unless the
prover is extended with specialised inference rules and heuristics.
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The complexity of preparing problems for first-order theorem provers
can be battled by extending the logic supported by the provers. Such
extension should include theories and new syntactical features that are
common in problems from application domains but sensitive to transla-
tions. The appropriate translation of these features to plain first-order
logic therefore becomes the responsibility of the provers themselves. The
right choice of new features and their efficient implementation in theorem
provers facilitates applications of automated theorem proving. Firstly,
users of theorem provers are relieved from the tedious translations and
can express their problems closer to their original domains. Secondly,
theorem provers are able to implement translations of these features that
suit them best. Thirdly, theorem provers can try multiple different trans-
lations in the same proof attempt. Finally, theorem provers can enhance
proof search for problems with specific features by implementing dedicated
inference rules and preprocessing steps for these features.

This thesis addresses the following research question: which new ex-
tensions of first-order theorem provers are useful for applications and
how can these extensions be efficiently implemented? The thesis identifies
that first class Boolean sort, if-then-else and let-in expressions are
useful for problems from program verification and automation of proof
assistants and are generally not supported by first-order theorem provers.
The thesis presents a modification of first-order logic named FOOL that
contains these features and gives new techniques for reasoning in it and
using it. The thesis describes implementation details and challenges in
the Vampire theorem prover, however the described extensions and their
implementation can be carried out in any other first-order prover.

This chapter describes the background of the thesis and is structured
as follows. First, we overview the key concepts of automated theorem
proving in first-order logic. Then, we explain how program verification
tools and proof assistants benefit from extensions of theorem provers
presented in the thesis. Finally, we detail the main contributions of the
thesis and overview its structure.

Automated Theorem Proving in First-Order Logic
First-order logic is not decidable, there is no algorithm that could in
general determine whether a given first-order formula is valid or not.
First-order logic is semi-decidable, an algorithm that enumerates all finite
derivations in the logical system until a given first-order formula is found,
terminates if the formula is valid, and may run forever otherwise. If a
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formula is satisfiable but not valid, there is no algorithm that could in
general demonstrate that. A well studied and generally best performing
class of algorithms that search for validity of first-order problems are
those based on saturation and the calculus of resolution and superposition.
These algorithms are implemented in automated theorem provers such as
E [79], Spass [99] and Vampire [57].

First-order theorem provers work with first-order formulas represented
as sets of clauses. A first-order formula is in a clausal normal form (CNF)
if it is a universally quantified conjunction of disjunctions of literals.
An alternative representation of a CNF is as a set of first-order clauses,
where each clause is a finite multiset of literals. A clausification algorithm
converts an arbitrary first-order formula to a set of first-order clauses, pre-
serving satisfiability. Most first-order provers that support formulas in full
first-order logic implement such algorithms as part of their preprocessing
of the input.

First-order theorem provers construct proofs by refutation. Given
a first-order problem of the form Premises ⇒ Conjecture, a theorem
prover first negates the conjecture, obtaining Premises ∧ ¬Conjecture,
then converts this formula to a set of clauses S and attempts to show
that S is unsatisfiable by deriving contradiction (the empty clause). To
that end, the theorem prover saturates the set S with respect to some
inference system I which is a collection of inference rules. An inference
rule is a n-ary (n ≥ 0) relation on clauses written as

A1 . . . An−1

B
,

where A1, . . . , An−1 are premises and B is the conclusion. A set of clauses
is called saturated with respect to I if for every inference of I with
premises in this set, the conclusion of the inference also belongs to that set.
To saturate the set S, the theorem prover systematically and exhaustively
applies inference rules from I to premises from S and adds the conclusion
of each inference to S. If the empty clause is derived during this process,
then the initial set S is unsatisfiable and the input problem is valid. In
such case the theorem prover returns the proof of the problem as a tree
of inferences with clauses from the initial set S as leafs and the empty
clause as the root. If after applying all inferences between clauses in the
saturated set S the empty clause has not been derived and the inference
system I is complete then the initial set S is satisfiable and the problem
is not valid. In such case the theorem prover returns the saturated set
S. Saturation might not terminate on a satisfiable set of clauses, in such
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case the theorem prover sooner or later runs out of resources and fails. In
practice, finite saturation is rare and theorem provers focus on deriving
the empty clause by implementing various techniques and heuristics that
make exploration of the search space of clauses more efficient.

Modern theorem provers employ inference systems that include refine-
ments of the calculus of resolution, derived from the work of Robinson [77],
and superposition, derived from the work of Bachmair and Ganzinger [3]
(see also [4, 66]). The inference rules in this calculus are guarded with
side conditions which determine whether a rule can be applied. These
conditions prevent the search space of clauses from growing too fast and
are essential in practice. The key concepts used in these conditions are a
simplification ordering and a literal selection function. They are under-
stood as parameters of the calculus. A simplification ordering on terms
� captures the notion of simplicity (see e.g. [28]) i.e. t1 � t2 implies
that t2 is in some way simpler than t1. There are direct extensions of
simplification ordering to literals and clauses. A literal selection function
determines for a given clause which literals should be used for inferences.
Figure 1 shows the most important inference rules of the superposition
and resolution calculus (selected literals are underlined). In this figure,
mgu denotes a most general unifier of two first-order terms and L[s] (t[s])
denotes that a term s occurs in a literal L (term t).

An important concept related to saturation in redundancy elimination.
A clause C from a set S is called redundant in S if it is a logical conse-
quence of clauses in S strictly smaller than C w.r.t. to a simplification
ordering. Redundant clauses can be eliminated from the search space
without compromising completeness. A powerful criterion of redundancy
of a clause is subsumption. A clause A subsumes B if some subclause
of B is an instance of A. If a clause A from a set S subsumes B, B is
redundant in S. Saturation up to redundancy [66] terminates when the
inference system cannot derive any new clauses that are not redundant
in the search space.

Another powerful technique is splitting [42] of long clauses into smaller
ones with disjoint sets of used variables so that the search space can be
explored in smaller parts. This technique is motivated by the observation
that long clauses slow down saturation based proof search. A recent
improvement of splitting is the AVATAR architecture [97] that employs
a SAT or SMT solver to guide splitting decisions.

The aforementioned notions and methods and many other refinements
of proof search, implemented in theorem provers, aim to constrain the
growth of the search space and avoid unnecessary inferences. Ultimately,
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Resolution
A ∨ C1 ¬A′ ∨ C2

(C1 ∨ C2)θ
,

Factoring
A ∨A′ ∨ C
(A ∨ C)θ

,

where, for both inferences, θ = mgu(A,A′) and A is not an equality

Superposition
l
.= r ∨ C1 L[s] ∨ C2

(L[r] ∨ C1 ∨ C2)θ
,
where θ = mgu(l, s), rθ 6� lθ
and L[r] is not an equality

or

l
.= r ∨ C1 t[s]⊗ t′ ∨ C2

(t[r]⊗ t′ ∨ C1 ∨ C2)θ
,
where θ = mgu(l, s), tθ 6� sθ, t′θ 6� t[s]θ
and ⊗ is either .= or 6 .=

Equality resolution
s
.= t ∨ C
Cθ

,

where θ = mgu(s, t)

Equality factoring
s
.= t ∨ s′ .= t′ ∨ C

(t 6 .= t′ ∨ s′ .= t′ ∨ C)θ
,

where θ = mgu(s, t), tθ 6� sθ and t′θ 6� s′θ

Figure 1. The inference rules of the superposition and resolution calculus.

the behaviour of a theorem prover can be tuned in many different ways.
Whether or not a theorem prover solves the input problem depends to a
large degree on the choice of parameters of the proof search algorithm. Dif-
ferent combinations of these parameters can solve different problems. For
that reason theorem provers such as E, iProver and Vampire implement
portfolios of proof search strategies. Based on certain characteristics of
the input, theorem provers select the appropriate strategies and schedules
for them, and then run these strategies one by one in a time-slicing fashion.
Some of these strategies are designed to be refutationally incomplete —
they cannot derive the empty clause from an arbitrary unsatisfiable set of
clauses, but for some unsatisfiable sets of clauses they derive the empty
clause very quickly. The usage of multiple proof search strategies in the
same proof attempt allows theorem provers to succeed on a larger number
of problems. Some provers also extend their portfolios with proof search
techniques other than saturation. For example, Vampire includes in its
portfolios an implementation of the Inst-Gen calculus [50] and a finite
model builder [72].

5



Another contributing factor to the success of a theorem prover is how
well the input problem is prepared to be processed by saturation. First-
order theorem provers are known to be fragile with respect to the input.
Multiple, often subtle, characteristics of a first-order problem might affect
the performance of saturation based proof search. These characteristics
include, for example, the number of clauses in the problem, the size of
clauses and the size of the signature. Theorem provers implement elabo-
rate preprocessing techniques, in particular improvements of clausification
algorithms (see e.g. [68, 2, 70]), that aim to produce good sets of clauses.

Some first-order formulas can be problematic for efficient proof search.
A common technique employed by theorem provers is to replace such
formulas with specialised inference rules. A well known example of this
technique is handling of equality. Equality can be finitely axiomatised
in first-order logic as a congruence relation. However, resolution and
factoring with equality axioms are known to generate a lot of (mostly
unnecessary) new clauses and thus is very inefficient. Rather than ax-
iomatising equality, first-order provers consider it part of the logic and
implement specialised inference rules for equality reasoning. These in-
ference rules include refinements of the paramodulation rule [101, 76].
They are part of the standard arsenal of inference rules used by theorem
provers. Another example is the extensionality resolution rule, imple-
mented in Vampire [36]. This rule replaces difficult extensionality axioms
that are routinely used in encodings of data collections and sets.

The performance of first-order theorem provers is evaluated empirically
on large corpora of problems. Comparison of provers is mostly based
on success rates and run times. The main corpus is the Thousands of
Problems for Theorem Provers (TPTP) library [83]. The problems in this
corpus are written in a variety of languages, such as FOF for untyped first-
order formulas, TFF0 [90] for typed monomorphic first-order formulas and
TFF1 [18] for typed rank-1 polymorphic first-order formulas. The TPTP
library is used as a basis for the annual CASC system competition [92].

Many practical problems tackled by theorem provers are expressed
in the combination of first-order logic and theories. For example, prob-
lems coming from program verification routinely use integer arithmetic,
arrays and datatypes. Most interesting theories do not have a complete
encoding in first-order logic and require dedicated support in theorem
provers. Vampire handles the theory of integer arithmetic by (i) auto-
matically adding incomplete relevant theory axioms to the search space;
(ii) applying dedicated inference rules for ground evaluation of theory
terms; and (iii) using AVATAR modulo theories [69]. Vampire supports
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the polymorphic theory or arrays by automatically instantiating theory
axioms for each sort of arrays [51]. Finally, Vampire supports datatypes
and codatatypes [17]. Their underlying theory of term algebras cannot
be finitely axiomatised in first-order logic, however complete reasoning
with this theory was implemented using dedicated inference rules.

Extensions of First-Order Logic for Applications
Deductive Program Verification. The task of a program verification
tool is to check whether a given program satisfies its specification. A
program specification can be expressed with logical formulas that annotate
program statements and capture their properties. Typical examples of
such properties are pre-conditions, post-conditions and loop invariants.
These program properties are checked using various tools (see e.g. [20]
for a detailed overview). Deductive program verification sees compliance
with specification as a logical problem that can be checked by automated
theorem provers. For that, program statements are first translated to
logical formulas that capture the semantics of the statements. Then, a
theorem is built with the translated formulas as premises and program
properties as the conjecture. Validity of the theorem is interpreted as
that the program statements have their annotated properties. Conversely,
failure to show validity might indicate a bug in the program. Program
verification frameworks such as Boogie [6], Why3 [31] and Frama-C [48]
rely on automated theorem provers for checking program properties.

Theorem provers can be used not just for checking program properties,
but also for generating them. Recent approaches in interpolation and loop
invariant generation [64, 56, 41] present initial results of using first-order
theorem provers for generating quantified program properties. First-order
theorem provers can also be used to generate program properties with
quantifier alternations [56]; such properties could not be generated fully
automatically by any previously known method.

Automation of Proof Assistants. Proof assistants are software tools
that assist users in constructing proofs of mathematical problems. Proof
assistants use formalisations of mathematics based on higher-order logic
(Isabelle/HOL [67]), type theory (Coq [7]), set theory (Mizar [94]) and
others. Many proof assistants enhance the workflow of their users by
automatically filling in parts of the user’s proof with the help of tactics.
Tactics are specialised scripts that run a predefined collection of proof
searching strategies. These strategies can be implemented inside the proof
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assistant itself or rely on third-party automated theorem provers [19,
96]. Automation using external theorem provers, including first-order
ones, is implemented e.g. in the Sledgehammer extension [19] of Isabelle.
Sledgehammer heuristically picks lemmas and definitions that might be
necessary for the proof, translates them to the logic of automated theorem
provers and hands over the resulting formulas to the provers. If one of
the provers returns a proof, Sledgehammer uses this proof to reconstruct
a proof in the calculus of Isabelle. The translation of Isabelle’s lemmas
and definitions might be incomplete because the logic of Isabelle is more
expressive than that of automated provers.

The translation of the following features of programming languages
and more expressive logics to plain first-order logic might be cumbersome
and inefficient. This thesis presents features of FOOL that can be used for
a more straightforward translation. Further, the thesis present methods of
efficient support of these features and an implementation of these methods
in Vampire.

1. Boolean values in programming languages are used both as expres-
sions in conditional and loop statements and as Boolean flags passed
as arguments to functions. A natural way of translating program
statements with Booleans into formulas is by translating conditions
as formulas and function arguments as terms. Yet one cannot mix
Boolean terms and formulas in the same way in plain first-order logic.
FOOL contains the Boolean sort as its first class sort. Formulas
in FOOL are indistinguishable from Boolean terms which coincides
with the treatment of Booleans in programming languages.

2. Properties expressed in higher-order logic routinely use quantifica-
tion over the interpreted Boolean sort; this is not allowed in plain
first-order logic. FOOL allows quantification over the first class
Boolean sort. Besides proof assistants, the first class Boolean sort
is useful to higher-order automated theorem provers such as Sa-
tallax [21] and Leo-II [14] that employ first-order provers for their
proof search.

3. Imperative programs are structured as sequences of variable up-
dates. Standard techniques for translating such sequences to logic
involve computing a static single assignment (SSA) form of the
program. Computation of an SSA form introduces intermediate
variables and their presence in the resulting formula can deterio-
rate the performance of a theorem prover. FOOL contains let-in
expressions. One can concisely express sequences of variable assign-
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ments in FOOL as nested let-in and leave the decision of naming
intermediate states of the program or not to the theorem prover.

4. Both programming language and logics of proof assistants routinely
use conditional expressions and local definitions of functions. The
standard approaches for translating them are inlining and naming.
Either one of these approaches can result in difficult first-order
formulas. FOOL contains if-then-else expressions and allows
let-in expressions to define function and predicate symbols with
arbitrary arity. The choice between inlining and naming is left to
the theorem prover itself which is better equipped to make it.

Contributions of the Thesis
In summary, the work presented in this thesis

1. introduces the extension FOOL of first-order logic that contains
useful syntactical constructs that are usually not supported by first-
order provers, mentioned before;

2. explores how reasoning in FOOL can be efficiently implemented in
existing automated theorem provers for first-order logic;

3. gives practical evidence of usefulness of FOOL for application through
examples and developed translation techniques;

4. gives practical evidence of efficiency of reasoning with FOOL through
experimental results on large diverse collections of problems.

FOOL. The thesis presents FOOL, standing for first-order logic (FOL)
with Boolean sort. FOOL extends ordinary many-sorted FOL with (i) first
class Boolean sort, (ii) Boolean variables used as formulas, (iii) formulas
used as arguments to function and predicate symbols, (iv) if-then-else
expressions and (v) let-in expressions. if-then-else and let-in expres-
sions can occur as both terms and formulas. let-in expressions can use
(multiple simultaneous) definitions of function symbols, predicate symbols,
and tuples. The thesis presents the definition of FOOL, its semantics, and
a simple model-preserving translation from FOOL formulas to formulas
of first-order logic. This translation can be used to support FOOL in
existing first-order provers.
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Reasoning with FOOL. The thesis presents two approaches to an
implementation of FOOL in first-order provers that improve over the
simple translation of FOOL to FOL. The first approach is a new technique
of dealing with the Boolean sort in superposition theorem provers. This
technique includes replacement of one of the Boolean sort axioms with
a specialised inference rule called FOOL paramodulation. The second
approach is a new algorithm VCNFFOOL that transforms FOOL formulas
directly to first-order clauses. The thesis presents an implementation of
the simple translation from FOOL to FOL and both improved approaches
in Vampire.

Applications of FOOL. The thesis presents an encoding of the next
state relations of imperative programs in FOOL. Compared to similar
methods, this encoding avoids introducing intermediate variables and re-
sults in FOOL formulas that concisely represent the structure of program
fragments in logic. The thesis presents a work on verification of virtual
private cloud network configurations with Vampire. The encoding of ver-
ification problems in this work relies on first class Booleans, the theory
of arrays and the theory of tuples.

Practical Evaluation. The thesis presents extensive experiments on
running Vampire, other first-order theorem provers, higher-order theorem
provers and SMT solvers on FOL and FOOL problems. These problems
come from various sources: benchmarks from the TPTP and SMT-LIB
library, proof obligations generated by the Isabelle proof assistant, and
verification conditions generated by multiple different program verification
tools. The experimental results obtained with these problems show in
particular that

1. Vampire with FOOL paramodulation performs better than Vampire
with the simple translation from FOOL to FOL;

2. Vampire with VCNFFOOL performs better that Vampire with FOOL
paramodulation;

3. Vampire performs better on verification conditions translated to
FOOL than the same verification conditions translated to FOL
using methods implemented in state-of-the-art verification tools.

Impact on TPTP. The language of FOOL is a superset of TFF0 — the
monomorphic first-order part of the TPTP language. The thesis describes
a modification of the TPTP language needed to represent FOOL formulas.
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This modification has been included in the TPTP standard as the TPTP
Extended Typed First-Order Form (TFX).

Impact on Vampire. The language of FOOL is a superset of the core
theory of the SMT-LIB language [10], the standard language of SMT
solvers. First-order provers that support FOOL can therefore reason
about some problems from the SMT-LIB library. This opens up an op-
portunity to evaluate first-order provers on problems that were previously
only checked by SMT solvers. Vampire gained support for SMT-LIB
based on its implementation of FOOL, and since 2016 has been partic-
ipating in the SMT-COMP competition [11] where it contends against
SMT solvers.

The support of both FOOL and theories such as arithmetic, arrays and
datatypes, makes Vampire a convenient and powerful tool for reasoning
about properties of programs.

Structure of the Thesis
The work described in this thesis has been carried out in six papers, each
contained in a separate chapter. Four papers (Chapters 1, 2, 3 and 4) were
published in peer-reviewed conferences, one (Chapter 6) was published in
a peer-reviewed workshop, and one (Chapter 5) is a technical report not
yet submitted for publication. The references of the papers have been
combined into a single bibliography at the end of the thesis. Other than
that, the papers have only been edited for formatting purposes, and in
general appear in their original form.

The chapters of this thesis are arranged in the order in which their
correspondent papers were written. Chapter 1 presents the syntax and
semantics of FOOL. Chapter 2 presents the implementation of FOOL
in Vampire. Chapter 3 presents an efficient clausification algorithm for
FOOL. Chapter 4 describes an encoding of the next state relations of im-
perative programs in FOOL. Chapter 5 describes an approach to network
verification based on automated reasoning in first-order logic, which uses
features of FOOL. Finally, Chapter 6 describes TFX, the extension of the
TPTP language that contains the syntax for FOOL.

Each of the papers contained in this thesis has been written and pre-
sented separately. As a result, the introductory remarks and preliminaries
of some of the chapters overlap. Another consequence is that some ideas
presented in earlier chapters are revisited and developed in later chapters.
One example of such idea is the encoding of the next state relations of
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imperative programs in FOOL. A sketch of this encoding first appears in
Chapter 2 and preliminary experimental results are discussed in Chapter 3.
The precise formal description of the encoding and extensive evaluation
is however given later in Chapter 4. Another example is the set of syn-
tactical constructs available in FOOL. The original description of FOOL
in Chapter 1 does not include let-in expressions with simultaneous defi-
nitions, definitions of tuples and tuple expressions. These constructs are
included in later chapters.

The contributions of the thesis are the cumulative contributions of all
six papers. The rest of this section details the main contributions of each
individual paper.

Chapter 1. A First Class Boolean Sort in
First-Order Theorem Proving and TPTP
The paper presents the syntax and semantics of FOOL. We show that
FOOL is a modification of FOL and reasoning in it reduces to reasoning
in FOL. We give a model-preserving translation of FOOL to FOL that
can be used for proving theorems in FOOL in a first-order prover. We
discuss a modification of superposition calculus that can reason efficiently
in the presence of Boolean sort. This modification includes replacement
of one of the Boolean sort axioms with a specialised inference rule that
we called FOOL paramodulation. We note that the TPTP language can
be changed to support FOOL, which will also simplify some parts of the
TPTP syntax.

Statement of contribution. The paper is co-authored with Laura
Kovács and Andrei Voronkov. Evgenii Kotelnikov contributed to the
formalisation of FOOL and its translation to FOL.

Bibliographic information. The paper has been published in the
proceedings of the 8th Conference on Intelligent Computer Mathematics
(CICM) in 2015 [53].

Chapter 2. The Vampire and the FOOL
The paper describes the implementation of FOOL in Vampire. We extend
and simplify the TPTP language by providing more powerful and uniform
representations of if-then-else and let-in expressions. We demonstrate
usability and high performance of our implementation on two collections
of benchmarks, coming from the higher-order part of the TPTP library
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and from the Isabelle interactive theorem prover. We compare the results
of running Vampire on the benchmarks with those of SMT solvers and
higher-order provers. Moreover, we compare the performance of Vampire
with and without FOOL paramodulation. We give a simple extension
of FOOL, allowing to express the next state relation of a program as a
Boolean formula which is linear in the size of the program.

Statement of contribution. The paper is co-authored with Laura
Kovács, Giles Reger and Andrei Voronkov. Evgenii Kotelnikov con-
tributed with the implementation of FOOL in Vampire and the experi-
ments.

Bibliographic information. The paper has been published in the
proceedings of the 5th ACM SIGPLAN Conference on Certified Programs
and Proofs (CPP) in 2016 [51].

Chapter 3. A Clausal Normal Form Translation
for FOOL
The paper presents a clausification algorithm that translates a FOOL
formula to an equisatisfiable set of first-order clauses. This algorithm
aims to minimise the number of clauses and the size of the resulting
signature, especially on formulas with if-then-else, let-in expressions
and complex Boolean structure. We demonstrate by experiments that
the implementation of this algorithm in Vampire increases performance
of the prover on FOOL problems compared to the earlier translation of
FOOL formulas to full first-order logic. We extended Vampire with new
preprocessing options that can be used to strengthen its portfolios.

Statement of contribution. The paper is co-authored with Laura
Kovács, Martin Suda and Andrei Voronkov. Evgenii Kotelnikov con-
tributed with the extension of VCNF that supports FOOL, the imple-
mentation of this extension in Vampire and the experiments.

Bibliographic information. The paper has been published in the
proceedings of the 2nd Global Conference on Artificial Intelligence (GCAI)
in 2016 [52].
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Chapter 4. A FOOLish Encoding of the Next State
Relations of Imperative Programs
The paper describes an encoding of the next state relations of imperative
programs with variable updates and if-then-else statements in FOOL.
Based on this encoding the paper presents a translation of imperative
programs annotated with their pre- and post-conditions to partial correct-
ness properties of these programs. We demonstrate by experiments that
this translation results in formulas that are easier for Vampire than the
formulas produced by program verification tool such Boogie and BLT.

Statement of contribution. The paper is co-authored with Laura
Kovács and Andrei Voronkov. Evgenii Kotelnikov contributed with the
formalisation of the translation of imperative programs to FOOL and the
experiments.

Bibliographic information. The paper has been published in the
proceedings of the 9th International Joint Conference on Automated
Reasoning (IJCAR) in 2018 [54].

Chapter 5. Checking Network Reachability Properties
by Automated Reasoning in First-Order Logic
The paper describes an approach for static verification of virtual private
cloud networks using automated theorem proving for first-order logic. We
model networks with Horn clauses and check first-order properties of these
models using the Vampire theorem prover. We used Vampire both as a
saturation-based theorem prover and a finite model builder for different
kinds of checked properties.

Statement of contribution. The chapter is co-authored with Pavle
Subotić and based on a joint work with Byron Cook, Temesghen Kahsai
and Sean McLaughlin. Evgenii Kotelnikov contributed with the encoding
of network reachability properties in first-order logic and the implemen-
tation of a checker for these problems based on Vampire.

Chapter 6. TFX: The TPTP Extended Typed First-
Order Form
The paper presents the new language TFX that extends and simplifies the
language of typed first-order formulas TFF. TFX includes the first class
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Boolean sort, if-then-else expressions, let-in expressions and tuples.
The inclusion of these syntactic constructs was motivated by the work on
FOOL and FOOL formulas can be directly expressed in TFX. TFX has
been included in the latest release of the TPTP library.

Statement of contribution. The paper is co-authored with Geoff
Sutcliffe. Evgenii Kotelnikov contributed with the discussion of the TFX
syntax, the description of FOOL and examples of FOOL problems.

Bibliographic information. The paper has been published in the
proceedings of the 6th Workshop on Practical Aspects of Automated
Reasoning (PAAR) in 2018 [89].
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Chapter 1

A First Class Boolean Sort in
First-Order Theorem Proving
and TPTP

Evgenii Kotelnikov, Laura Kovács and Andrei Voronkov

Abstract. To support reasoning about properties of programs operating
with Boolean values one needs theorem provers to be able to natively deal
with the Boolean sort. This way, program properties can be translated to
first-order logic and theorem provers can be used to prove program prop-
erties efficiently. However, in the TPTP language, the input language
of automated first-order theorem provers, the use of the Boolean sort
is limited compared to other sorts, thus hindering the use of first-order
theorem provers in program analysis and verification. In this paper, we
present an extension FOOL of many-sorted first-order logic, in which the
Boolean sort is treated as a first-class sort. Boolean terms are indistin-
guishable from formulas and can appear as arguments to functions. In
addition, FOOL contains if-then-else and let-in constructs. We define
the syntax and semantics of FOOL and its model-preserving translation
to first-order logic. We also introduce a new technique of dealing with
Boolean sorts in superposition-based theorem provers. Finally, we discuss
how the TPTP language can be changed to support FOOL.

Published in the Proceedings of the 8th Conference on Intelligent
Computer Mathematics, pages 71–86. Springer, 2015.
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1.1 Introduction
Automated program analysis and verification requires discovering and
proving program properties. Typical examples of such properties are loop
invariants or Craig interpolants. These properties usually are expressed in
combined theories of various data structures, such as integers and arrays,
and hence require reasoning with both theories and quantifiers. Recent
approaches in interpolation and loop invariant generation [64, 56, 41]
present initial results of using first-order theorem provers for generating
quantified program properties. First-order theorem provers can also be
used to generate program properties with quantifier alternations [56]; such
properties could not be generated fully automatically by any previously
known method. Using first-order theorem prover to generate, and not
only prove program properties, opens new directions in analysis and
verification of real-life programs.

First-order theorem provers, such as iProver [49], E [79], and Vam-
pire [57], lack however various features that are crucial for program analy-
sis. For example, first-order theorem provers do not yet efficiently handle
(combinations of) theories; nevertheless, sound but incomplete theory ax-
iomatisations can be used in a first-order prover even for theories having
no finite axiomatisation. Another difficulty in modelling properties arising
in program analysis using theorem provers is the gap between the seman-
tics of expressions used in programming languages and expressiveness of
the logic used by the theorem prover. A similar gap exists between the
language used in presenting mathematics. For example, a standard way
to capture assignment in program analysis is to use a let-in expression,
which introduces a local binding of a variable, or a function for array
assignments, to a value. There is no local binding expression in first-order
logic, which means that any modelling of imperative programs using first-
order theorem provers at the backend, should implement a translation
of let-in expressions. Similarly, mathematicians commonly use local
definitions within definitions and proofs. Some functional programming
languages also contain expressions introducing local bindings. In all three
cases, to facilitate the use of first-order provers, one needs a theorem
prover implementing let-in constructs natively.

Efficiency of reasoning-based program analysis largely depends on how
programs are translated into a collection of logical formulas capturing the
program semantics. The Boolean structure of a program property that
can be efficiently treated by a theorem prover is however very sensitive
to the architecture of the reasoning engine of the prover. Deriving and
expressing program properties in the “right” format therefore requires
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solid knowledge about how theorem provers work and are implemented —
something that a user of a verification tool might not have. Moreover,
it can be hard to efficiently reason about certain classes of program
properties, unless special inference rules and heuristics are added to the
theorem prover, see e.g. [36] when it comes to prove properties of data
collections with extensionality axioms.

In order to increase the expressiveness of program properties gener-
ated by reasoning-based program analysis, the language of logical formulas
accepted by a theorem prover needs to be extended with constructs of
programming languages. This way, a straightforward translation of pro-
grams into first-order logic can be achieved, thus relieving users from
designing translations which can be efficiently treated by the theorem
prover. One example of such an extension is recently added to the TPTP
language [83] of first-order theorem provers, resembling if-then-else and
let-in expressions that are common in programming languages. Namely,
special functions $ite_t and $ite_f can respectively be used to express
a conditional statement on the level of logical terms and formulas, and
$let_tt , $let_tf , $let_ff and $let_ft can be used to express lo-
cal variable bindings for all four possible combinations of logical terms
(t ) and formulas (f ). While satisfiability modulo theory (SMT) solvers,
such as Z3 [27] and CVC4 [8], integrate if-then-else and let-in expres-
sions, in the first-order theorem proving community so far only Vampire
supports such expressions.

To illustrate the advantage of using if-then-else and let-in expres-
sions in automated provers, let us consider the following example. We are
interested in verifying the partial correctness of the code fragment below:

if (r(a)) {
a := a + 1

} else {
a := a + q(a)

}

using the pre-condition ((∀x)P (x) ⇒ x ≥ 0) ∧ ((∀x)q(x) > 0) ∧ P (a)
and the post-condition a > 0. Let a1 denote the value of the program
variable a after the execution of the if statement. Using if-then-else
and let-in expressions, the next state function for a can naturally be
expressed by the following formula:

a1 = if r(a) then let a = a + 1 in a
else let a = a + q(a) in a
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This formula can further be encoded in TPTP, and hence used by a
theorem prover as a hypothesis in proving partial correctness of the above
code snippet. We illustrate below the TPTP encoding of the first-order
problem corresponding to the partial program correctness problem we
consider. Note that the pre-condition becomes a hypothesis in TPTP,
whereas the proof obligation given by the post-condition is a TPTP
conjecture. All formulas below are typed first-order formulas (tff ) in
TPTP that use the built-in integer sort ($int ).
tff(1, type, p: $int > $o).
tff(2, type, q: $int > $int).
tff(3, type, r: $int > $o).
tff(4, type, a: $int).
tff(5, hypothesis, ![X: $int]: (p(X) => $greatereq(X, 0))).
tff(6, hypothesis, ![X: $int]: ($greatereq(q(X), 0))).
tff(7, hypothesis, p(a)).
tff(8, hypothesis,

a1 = $ite_t(r(a), $let_tt(a, $sum(a, 1), a),
$let_tt(a, $sum(a, q(a)), a))).

tff(9, conjecture, $greater(a1, 0)).

Running a theorem prover that supports $ite_t and $let_tt on
this TPTP problem would prove the partial correctness of the program
we considered. Note that without the use of if-then-else and let-in
expressions, a more tedious translation is needed for expressing the next
state function of the program variable a as a first-order formula. When
considering more complex programs containing multiple conditional ex-
pressions assignments and composition, computing the next state function
of a program variable results in a formula of size exponential in the num-
ber of conditional expressions. This problem of computing the next state
function of variables is well-known in the program analysis community,
by computing so-called static single assignment (SSA) forms. Using the
if-then-else and let-in expressions recently introduced in TPTP and
already implemented in Vampire [29], one can have a linear-size transla-
tion instead.

Let us however note that the usage of conditional expressions in TPTP
is somewhat limited. The first argument of $ite_t and $ite_f is a
logical formula, which means that a Boolean condition from the program
definition should be translated as such. At the same time, the same
condition can be treated as a value in the program, for example, in a form
of a Boolean flag, passed as an argument to a function. Yet we cannot mix
terms and formulas in the same way in a logical statement. A possible
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solution would be to map the Boolean type of programs to a user-defined
Boolean sort, postulate axioms about its semantics, and manually convert
Boolean terms into formulas where needed. This approach, however,
suffers the disadvantages mentioned earlier, namely the need to design a
special translation and its possible inefficiency.

Handling Boolean terms as formulas is needed not only in applications
of reasoning-based program analysis, but also in various problems of for-
malisation of mathematics. For example, if one looks at two largest kinds
of attempts to formalise mathematics and proofs: those performed by in-
teractive proof assistants, such as Isabelle [67], and the Mizar project [94],
one can see that first-order theorem provers are the main workhorses
behind computer proofs in both cases — see e.g. [19, 96]. Interactive the-
orem provers, such as Isabelle routinely use quantifiers over Booleans. Let
us illustrate this by the following examples, chosen among 490 properties
about (co)algebraic datatypes, featuring quantifiers over Booleans, gener-
ated by Isabelle and kindly found for us by Jasmin Blanchette. Consider
the distributivity of a conditional expression (denoted by the ite func-
tion) over logical connectives, a pattern that is widely used in reasoning
about properties of data structures. For lists and the contains function
that checks that its second argument contains the first one, we have the
following example:

(∀p : bool)(∀l : listA)(∀x : A)(∀y : A)
contains(l, ite(p, x, y)) .=

(p⇒ contains(l, x)) ∧ (¬p⇒ contains(l, y))
(1.1)

A more complex example with a heavy use of Booleans is the unsatis-
fiability of the definition of subset_sorted.

(∀l1 : listA)(∀l2 : listA)(∀p : bool)
¬(subset_sorted(l1, l2) .= p ∧

(∀l′2 : listA)¬(l1
.= nil ∧ l2

.= l′2 ∧ p) ∧
(∀x1 : A)(∀l′1 : listA)¬(l1

.= cons(x1, l
′
1) ∧ l2

.= nil ∧ ¬p) ∧
(∀x1 : A)(∀l′1 : listA)(∀x2 : A)(∀l′2 : listA)
¬(l1

.= cons(x1, l
′
1) ∧ l2

.= cons(x2, l
′
2) ∧

p
.= ite(x1 < x2, false,

ite(x1
.= x2, subset_sorted(l′1, l′2),

subset_sorted(cons(x1, l
′
1), l′2)))))

(1.2)
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The subset_sorted function takes two sorted lists and checks that its
second argument is a sublist of the first one.

Problems with Boolean terms are also common in the SMT-LIB
project [10], the collection of benchmarks for SMT-solvers. Its core logic
is a variant of first-order logic that treats Boolean terms as formulas, in
which logical connectives and conditional expressions are defined in the
core theory.

In this paper we propose a modification FOOL of first-order logic,
which includes a first-class Boolean sort and if-then-else and let-in ex-
pressions, aimed for being used in automated first-order theorem proving.
It is the smallest logic that contains both the SMT-LIB core theory and
the monomorphic first-order subset of TPTP. The syntax and semantics
of the logic are given in Section 1.2. We further describe how FOOL can
be translated to the ordinary many-sorted first-order logic in Section 1.3.
Section 1.4 discusses superposition-based theorem proving and proposes
a new way of dealing with the Boolean sort in it. In Section 1.5 we
discuss the support of the Boolean sort in TPTP and propose changes
to it required to support a first-class Boolean sort. We point out that
such changes can also partially simplify the syntax of TPTP. Section 1.6
discusses related work and Section 1.7 contains concluding remarks.

The main contributions of this paper are the following:

1. the definition of FOOL and its semantics;

2. a translation from FOOL to first-order logic, which can be used to
support FOOL in existing first-order theorem provers;

3. a new technique of dealing with the Boolean sort in superposition
theorem provers, allowing one to replace Boolean sort axioms by
special rules;

4. a proposal of a change to the TPTP language, intended to support
FOOL and also simplify if-then-else and let-in expressions.

1.2 First-Order Logic with Boolean Sort
First-order logic with the Boolean sort (FOOL) extends many-sorted
first-order logic (FOL) in two ways:

1. formulas can be treated as terms of the built-in Boolean sort; and

2. one can use if-then-else and let-in expressions defined below.
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FOOL is the smallest logic containing both the SMT-LIB core theory and
the monomorphic first-order part of the TPTP language. It extends the
SMT-LIB core theory by adding let-in expressions defining functions
and TPTP by the first-class Boolean sort.

1.2.1 Syntax
We assume a countable infinite set of variables.

Definition 1.1. A signature of first-order logic with the Boolean sort is
a triple Σ = (S, F, η), where:

1. S is a set of sorts, which contains a special sort bool. A type is
either a sort or a non-empty sequence σ1, . . . , σn, σ of sorts, written
as σ1× . . .×σn → σ. When n = 0, we will simply write σ instead of
→ σ. We call a type assignment a mapping from a set of variables
and function symbols to types, which maps variables to sorts.

2. F is a set of function symbols. We require F to contain binary
function symbols ∨, ∧, ⇒ and ⇔, used in infix form, a unary
function symbol ¬, used in prefix form, and nullary function symbols
true, false.

3. η is a type assignment which maps each function symbol f into a
type τ . When the signature is clear from the context, we will write
f : τ instead of η(f) = τ and say that f is of the type τ .
We require the symbols ∨,∧,⇒,⇔ to be of the type bool×bool → bool,
¬ to be of the type bool → bool and true, false to be of the type bool.

In the sequel we assume that Σ = (S, F, η) is an arbitrary but fixed
signature.

To define the semantics of FOOL, we will have to extend the signature
and also assign sorts to variables. Given a type assignment η, we define
η, x : σ to be the type assignment that maps a variable x to σ and
coincides otherwise with η. Likewise, we define η, f : τ to be the type
assignment that maps a function symbol f to τ and coincides otherwise
with η.

Our next aim is to define the set of terms and their sorts with respect
to a type assignment η. This will be done using a relation η ` t : σ, where
σ ∈ S, terms can then be defined as all such expressions t.
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Definition 1.2. The relation η ` t : σ, where t is an expression and
σ ∈ S is defined inductively as follows. If η ` t : σ, then we will say that
t is a term of the sort σ w.r.t. η.

1. If η(x) = σ, then η ` x : σ.

2. If η(f) = σ1 × . . . × σn → σ, η ` t1 : σ1, . . . , η ` tn : σn, then
η ` f(t1, . . . , tn) : σ.

3. If η ` ϕ : bool, η ` t1 : σ and η ` t2 : σ, then η ` (if ϕ then t1
else t2) : σ.

4. Let f be a function symbol and x1, . . . , xn pairwise distinct variables.
If η, x1 : σ1, . . . , xn : σn ` s : σ and η, f : (σ1× . . .×σn → σ) ` t : τ ,
then η ` (let f(x1 : σ1, . . . , xn : σn) = s in t) : τ .

5. If η ` s : σ and η ` t : σ, then η ` (s .= t) : bool.

6. If η, x : σ ` ϕ : bool, then η ` (∀x : σ)ϕ : bool and η ` (∃x : σ)ϕ :
bool.

We only defined a let-in expression for a single function symbol. It is
not hard to extend it to a let-in expression that binds multiple pairwise
distinct function symbols in parallel, the details of such an extension are
straightforward.

When η is the type assignment function of Σ and η ` t : σ, we will
say that t is a Σ-term of the sort σ, or simply that t is a term of the sort
σ. It is not hard to argue that every Σ-term has a unique sort.

According to our definition, not every term-like expression has a sort.
For example, if x is a variable and η is not defined on x, then x is a
not a term w.r.t. η. To make the relation between term-like expressions
and terms clear, we introduce a notion of free and bound occurrences
of variables and function symbols. We call the following occurrences of
variables and function symbols bound:

1. any occurrence of x in (∀x : σ)ϕ or in (∃x : σ)ϕ;

2. in the term let f(x1 : σ1, . . . , xn : σn) = s in t any occurrence of a
variable xi in f(x1 : σ1, . . . , xn : σn) or in s, where i = 1, . . . , n.

3. in the term let f(x1 : σ1, . . . , xn : σn) = s in t any occurrence of
the function symbol f in f(x1 : σ1, . . . , xn : σn) or in t.

All other occurrences are called free. We say that a variable or a function
symbol is free in a term t if it has at least one free occurrence in t. A
term is called closed if it has no occurrences of free variables.
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Theorem 1.1. Suppose η ` t : σ. Then

1. for every free variable x of t, η is defined on x;

2. for every free function symbol f of t, η is defined on f ;

3. if x is a variable not free in t, and σ′ is an arbitrary sort, then
η, x : σ′ ` t : σ;

4. if f is a function symbol not free in t, and τ is an arbitrary type,
then η, f : τ ` t : σ.

Definition 1.3. A predicate symbol is any function symbol of the type
σ1 × . . . × σn → bool. A Σ-formula is a Σ-term of the sort bool. All
Σ-terms that are not Σ-formulas are called non-Boolean terms.

Note that, in addition to the use of let-in and if-then-else, FOOL
is a proper extension of first-order logic. For example, in FOOL formulas
can be used as arguments to terms and one can quantify over Booleans.
As a consequence, every quantified Boolean formula is a formula in FOOL.

1.2.2 Semantics
As usual, the semantics of FOOL is defined by introducing a notion of
interpretation and defining how a term is evaluated in an interpretation.

Definition 1.4. Let η be a type assignment. A η-interpretation I is a
map, defined as follows. Instead of I(e) we will write J e KI , for every
element e in the domain of I.

1. Each sort σ ∈ S is mapped to a nonempty domain Jσ KI . We require
J bool KI = {0, 1}.

2. If η ` x : σ, then Jx KI ∈ Jσ KI .

3. If η(f) = σ1 × . . .× σn → σ, then J f KI is a function from Jσ1 KI ×
. . .× Jσn KI to Jσ KI .

4. We require J true KI = 1 and J false KI = 0. We require J∧ KI , J∨ KI ,
J⇒ KI , J⇔ KI and J¬ KI respectively to be the logical conjunction,
disjunction, implication, equivalence and negation, defined over
{0, 1} in the standard way.

Given a η-interpretation I and a function symbol f , we define Igf to be
the mapping that maps f to g and coincides otherwise with I. Likewise,
for a variable x and value a we define Iax to be the mapping that maps x
to a and coincides otherwise with I.
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Definition 1.5. Let I be a η-interpretation, and η ` t : σ. The value
of t in I, denoted as evalI(t), is a value in Jσ KI inductively defined as
follows:

evalI(x) = Jx KI .

evalI(f(t1, . . . , tn)) = J f KI (evalI(t1), . . . , evalI(tn)).

evalI(s
.= t) =

{
1, if evalI(s) = evalI(t);
0, otherwise.

evalI((∀x : σ)ϕ) =
{
1, if evalIa

x
(ϕ) = 1 for all a ∈ Jσ KI ;

0, otherwise.

evalI((∃x : σ)ϕ) =
{
1, if evalIa

x
(ϕ) = 1 for some a ∈ Jσ KI ;

0, otherwise.

evalI(if ϕ then s else t) =
{

evalI(s), if evalI(ϕ) = 1;
evalI(t), otherwise.

evalI(let f(x1 : σ1, . . . , xn : σn) = s in t) = evalIg
f
(t),

where g is such that for all i = 1, . . . , n and ai ∈ Jσi KI , we have
g(a1, . . . , an) = evalIa1...an

x1...xn
(s).

Theorem 1.2. Let η ` ϕ : bool and I be a η-interpretation. Then

1. for every free variable x of ϕ, I is defined on x;

2. for every free function symbol f of ϕ, I is defined on f ;

3. if x is a variable not free in ϕ, σ is an arbitrary sort, and a ∈ Jσ KI
then evalI(ϕ) = evalIa

x
(ϕ);

4. if f is a function symbol not free in ϕ, σ1, . . . , σn, σ are arbitrary
sorts and g ∈ Jσ1 KI × . . . × Jσn KI → Jσ KI , then evalI(ϕ) =
evalIg

f
(ϕ).

Let η ` ϕ : bool. A η-interpretation I is called a model of ϕ, denoted
by I |= ϕ, if evalI(ϕ) = 1. If I |= ϕ, we also say that I satisfies ϕ. We
say that ϕ is valid, if I |= ϕ for all η-interpretations I, and satisfiable, if
I |= ϕ for at least one η-interpretation I. Note that Theorem 1.2 implies
that any interpretation, which coincides with I on free variables and free
function symbols of ϕ is also a model of ϕ.
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1.3 Translation of FOOL to FOL
FOOL is a modification of FOL. Every FOL formula is syntactically a
FOOL formula and has the same models, but not the other way around. In
this section we present a translation from FOOL to FOL, which preserves
models. This translation can be used for proving theorems of FOOL using
a first-order theorem prover. We do not claim that this translation is
efficient – more research is required on designing translations friendly for
first-order theorem provers.

We do not formally define many-sorted FOL with equality here, since
FOL is essentially a subset of FOOL, which we will discuss now.

We say that an occurrence of a subterm s of the sort bool in a term t

is in a formula context if it is an argument of a logical connective or the
occurrence in either (∀x : σ)s or (∃x : σ)s. We say that an occurrence of
s in t is in a term context if this occurrence is an argument of a function
symbol, different from a logical connective, or an equality. We say that a
formula of FOOL is syntactically first order if it contains no if-then-else
and let-in expressions, no variables occurring in a formula context and
no formulas occurring in a term context. By restricting the definition
of terms to the subset of syntactically first-order formulas, we obtain
the standard definition of many-sorted first-order logic, with the only
exception of having a distinguished Boolean sort and constants true and
false occurring in a formula context.

Let ϕ be a closed Σ-formula of FOOL. We will perform the following
steps to translate ϕ into a first-order formula. During the translation we
will maintain a set of formulas D, which initially is empty. The purpose
of D is to collect a set of formulas (definitions of new symbols), which
guarantee that the transformation preserves models.

1. Make a sequence of translation steps obtaining a syntactically first
order formula ϕ′. During this translation we will introduce new
function symbols and add their types to the type assignment η. We
will also add formulas describing properties of these symbols to D.
The translation will guarantee that the formulas ϕ and

∧
ψ∈D ψ∧ϕ′

are equivalent, that is, have the same models restricted to Σ.

2. Replace the constants true and false, standing in a formula context,
by nullary predicates > and ⊥ respectively, obtaining a first-order
formula.

3. Add special Boolean sort axioms.
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During the translation, we will say that a function symbol or a variable
is fresh if it neither appears in ϕ nor in any of the definitions, nor in the
domain of η.

We also need the following definition. Let η ` t : σ, and x be a variable
occurrence in t. The sort of this occurrence of x is defined as follows:

1. any free occurrence of x in a subterm s in the scope of (∀x : σ′)s or
(∃x : σ′)s has the sort σ′.

2. any free occurrence of xi in a subterm s1 in the scope of
let f(x1 : σ1, . . . , xn : σn) = s1 in s2 has the sort σi, where i =
1, . . . , n.

3. a free occurrence of x in t has the sort η(x).

If η ` t : σ, s is a subterm of t and x a free variable in s, we say that x
has a sort σ′ in s if its free occurrences in s have this sort.

The translation steps are defined below. We start with an empty set
D and an initial FOOL formula ϕ, which we would like to change into a
syntactically first-order formula. At every translation step we will select a
formula χ, which is either ϕ or a formula in D, which is not syntactically
first-order, replace a subterm in χ it by another subterm, and maybe add
a formula to D. The translation steps can be applied in any order.

1. Replace a Boolean variable x occurring in a formula context, by
x
.= true.

2. Suppose that ψ is a formula occurring in a term context such that
(i) ψ is different from true and false, (ii) ψ is not a variable, and (iii)
ψ contains no free occurrences of function symbols bound in χ. Let
x1, . . . , xn be all free variables of ψ and σ1, . . . , σn be their sorts.
Take a fresh function symbol g, add the formula (∀x1 : σ1) . . . (∀xn :
σn)(ψ ⇔ g(x1, . . . , xn) .= true) to D and replace ψ by g(x1, . . . , xn).
Finally, change η to η, g : σ1 × . . .× σn → bool.

3. Suppose that if ψ then s else t is a term containing no free
occurrences of function symbols bound in χ. Let x1, . . . , xn be
all free variables of this term and σ1, . . . , σn be their sorts. Take
a fresh function symbol g, add the formulas (∀x1 : σ1) . . . (∀xn :
σn)(ψ ⇒ g(x1, . . . , xn) .= s) and (∀x1 : σ1) . . . (∀xn : σn)(¬ψ ⇒
g(x1, . . . , xn) .= t) to D and replace this term by g(x1, . . . , xn).
Finally, change η to η, g : σ1× . . .× σn → σ0, where σ0 is such that
η, x1 : σ1, . . . , xn : σn ` s : σ0.
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4. Suppose that let f(x1 : σ1, . . . , xn : σn) = s in t is a term con-
taining no free occurrences of function symbols bound in χ. Let
y1, . . . , ym be all free variables of this term and τ1, . . . , τm be their
sorts. Note that the variables in x1, . . . , xn are not necessarily dis-
joint from the variables in y1, . . . , ym.
Take a fresh function symbol g and fresh sequence of variables
z1, . . . , zn. Let the term s′ be obtained from s by replacing all free oc-
currences of x1, . . . , xn by z1, . . . , zn, respectively. Add the formula
(∀z1 : σ1) . . . (∀zn : σn)(∀y1 : τ1) . . . (∀ym : τm)(g(z1, . . . , zn, y1, . . . ,

ym) .= s′) to D. Let the term t′ be obtained from t by replacing
all bound occurrences of y1, . . . , ym by fresh variables and each ap-
plication f(t1, . . . , tn) of a free occurrence of f in t by g(t1, . . . , tn,
y1, . . . , ym). Then replace let f(x1 : σ1, . . . , xn : σn) = s in t by t′.
Finally, change η to η, g : σ1× . . .× σn× τ1× . . .× τm → σ0, where
σ0 is such that η, x1 : σ1, . . . , xn : σn, y1 : τ1, . . . , ym : τm ` s : σ0.

The translation terminates when none of the above rules apply.
We will now formulate several of properties of this translation, which

will imply that, in a way, it preserves models. These properties are not
hard to prove, we do not include proofs in this paper.

Lemma 1.1. Suppose that a single step of the translation changes a
formula ϕ1 into ϕ2, δ is the formula added at this step (for step 1 we can
assume true = true is added), η is the type assignment before this step
and η′ is the type assignment after. Then for every η′-interpretation I
we have I |= δ ⇒ (ϕ1 ⇔ ϕ2).

By repeated applications of this lemma we obtain the following result.

Lemma 1.2. Suppose that the translation above changes a formula ϕ
into ϕ′, D is the set of definitions obtained during the translation, η is
the initial type assignment and η′ is the final type assignment of the
translation. Let I ′ be any interpretation of η′. Then I ′ |=

∧
ψ∈D ψ ⇒

(ϕ⇔ ϕ′).

We also need the following result.

Lemma 1.3. Any sequence of applications of the translation rules ter-
minates.

The lemmas proved so far imply that the translation terminates and
the final formula is equivalent to the initial formula in every interpretation
satisfying all definitions in D. To prove model preservation, we also need
to prove some properties of the introduced definitions.
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Lemma 1.4. Suppose that one of the steps 2–4 of the translation trans-
lates a formula ϕ1 into ϕ2, δ is the formula added at this step, η is the
type assignment before this step, η′ is the type assignment after, and
g is the fresh function symbol introduced at this step. Let also I be
η-interpretation. Then there exists a function h such that Ihg |= δ.

These properties imply the following result on model preservation.

Theorem 1.3. Suppose that the translation above translates a formula
ϕ into ϕ′, D is the set of definitions obtained during the translation, η
is the initial type assignment and η′ is the final type assignment of the
translation.

1. Let I be any η-interpretation. Then there is a η′-interpretation I ′
such that I ′ is an extension of I and I ′ |=

∧
ψ∈D ψ ∧ ϕ′.

2. Let I ′ be a η′-interpretation and I ′ |=
∧
ψ∈D ψ ∧ ϕ′. Then I ′ |= ϕ.

This theorem implies that ϕ and
∧
ψ∈D ψ ∧ ϕ′ have the same models,

as far as the original type assignment (the type assignment of Σ) is
concerned. The formula

∧
ψ∈D ψ ∧ ϕ′ in this theorem is syntactically

first-order. Denote this formula by γ. Our next step is to define a model-
preserving translation from syntactically first-order formulas to first-order
formulas.

To make γ into a first-order formula, we should get rid of true and
false occurring in a formula context. To preserve the semantics, we should
also add axioms for the Boolean sort, since in first-order logic all sorts
are uninterpreted, while in FOOL the interpretations of the Boolean sort
and constants true and false are fixed.

To fix the problem, we will add axioms expressing that the Boolean
sort has two elements and that true and false represent the two distinct
elements of this sort.

∀(x : bool)(x .= true ∨ x .= false) ∧ true 6 .= false. (1.3)

Note that this formula is a tautology in FOOL, but not in FOL.
Given a syntactically first-order formula γ, we denote by fol(γ) the

formula obtained from γ by replacing all occurrences of true and false in
a formula context by logical constants > and ⊥ (interpreted as always
true and always false), respectively and adding formula (1.3).

Theorem 1.4. Let η is a type assignment and γ be a syntactically first-
order formula such that η ` γ : bool.
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1. Suppose that I is a η-interpretation and I |= γ in FOOL. Then
I |= fol(γ) in first-order logic.

2. Suppose that I is a η-interpretation and I |= fol(γ) in first-order
logic. Consider the FOOL-interpretation I ′ that is obtained from
I by changing the interpretation of the Boolean sort bool by {0, 1}
and the interpretations of true and false by the elements 1 and 0,
respectively, of this sort. Then I ′ |= γ in FOOL.

Theorems 1.3 and 1.4 show that our translation preserves models.
Every model of the original formula can be extended to a model of the
translated formulas by adding values of the function symbols introduced
during the translation. Likewise, any first-order model of the translated
formula becomes a model of the original formula after changing the in-
terpretation of the Boolean sort to coincide with its interpretation in
FOOL.

1.4 Superposition for FOOL
In Section 1.3 we presented a model-preserving syntactic translation of
FOOL to FOL. Based on this translation, automated reasoning about
FOOL formulas can be done by translating a FOOL formula into a FOL
formula, and using an automated first-order theorem prover on the re-
sulting FOL formula. State-of-the-art first-order theorem provers, such
as Vampire [57], E [79] and Spass [99], implement superposition calcu-
lus for proving first-order formulas. Naturally, we would like to have a
translation exploiting such provers in an efficient manner.

Note however that our translation adds the two-element domain axiom
∀(x : bool)(x .= true ∨ x .= false) for the Boolean sort. This axioms will
be converted to the clause

x
.= true ∨ x .= false, (1.4)

where x is a Boolean variable. In this section we explain why this axiom
requires a special treatment and propose a solution to overcome problems
caused by its presence.

We assume some basic understanding of first-order theorem prov-
ing and superposition calculus, see, e.g. [4, 66]. We fix a superposition
inference system for first-order logic with equality, parametrised by a
simplification ordering � on literals and a well-behaved literal selection
function [57], that is a function that guarantees completeness of the cal-
culus. We denote selected literals by underlining them. We assume that
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equality literals are treated by a dedicated inference rule, namely, the
ordered paramodulation rule [76]:

l
.= r ∨ C L[s] ∨D
(L[r] ∨ C ∨D)θ

if θ = mgu(l, s),

where C,D are clauses, L is a literal, l, r, s are terms, mgu(l, s) is a most
general unifier of l and s, and rθ 6� lθ. The notation L[s] denotes that s
is a subterm of L, then L[r] denotes the result of replacement of s by r.

Suppose now that we use an off-the-shelf superposition theorem prover
to reason about FOL formulas obtained by our translation. W.l.o.g, we
assume that true � false in the term ordering used by the prover. Then
self-paramodulation (from true to true) can be applied to clause (1.4) as
follows:

x
.= true ∨ x .= false y

.= true ∨ y .= false
x
.= y ∨ x .= false ∨ y .= false

The derived clause x .= y∨x .= false∨y .= false is a recipe for disaster,
since the literal x .= y must be selected and can be used for paramodula-
tion into every non-variable term of a Boolean sort. Very soon the search
space will contain many clauses obtained as logical consequences of clause
(1.4) and results of paramodulation from variables applied to them. This
will cause a rapid degradation of performance of superposition provers.

To get around this problem, we propose the following solution. First,
we will choose term orderings � having the following properties: true �
false and true and false are the smallest ground terms w.r.t. �. Consider
now all ground instances of (1.4). They have the form s

.= true∨s .= false,
where s is a ground term. When s is either true or false, this instance
is a tautology, and hence redundant. Therefore, we should only consider
instances for which s � true. This prevents self-paramodulation of (1.4).

Now the only possible inferences with (1.4) are inferences of the form

x
.= true ∨ x .= false C[s]
C[true] ∨ s .= false

,

where s is a non-variable term of the sort bool. To implement this, we can
remove clause (1.4) and add as an extra inference rule to the superposition
calculus the following rule:

C[s]
C[true] ∨ s .= false

,
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where s is a non-variable term of the sort bool other than true and false.

1.5 TPTP Support for FOOL
The typed monomorphic first-order formulas subset, called TFF0, of the
TPTP language [83], is a representation language for many-sorted first-
order logic. It contains if-then-else and let-in constructs (see below),
which is useful for applications, but is inconsistent in its treatment of the
Boolean sort. It has a predefined atomic sort symbol $o denoting the
Boolean sort. However, unlike all other sort symbols, $o can only be
used to declare the return type of predicate symbols. This means that
one cannot define a function having a Boolean argument, use Boolean
variables or equality between Booleans.

Such an inconsistent use of the Boolean sort results in having two
kinds of if-then-else expressions and four kinds of let-in expressions.
For example, a FOOL-term let f(x1 : σ1, . . . , xn : σn) = s in t can be
represented using one of the four TPTP alternatives $let_tt , $let_tf ,
$let_ft or $let_ff , depending on whether s and t are terms or formu-
las.

Since the Boolean type is second-class in TPTP, one cannot directly
represent formulas coming from program analysis and interactive theorem
provers, such as formulas (1.1) and (1.2) of Section 1.1.

We propose to modify the TFF0 language of TPTP to coincide with
FOOL. It is not late to do so, since there is no general support for
if-then-else and let-in. To the best of our knowledge, Vampire is
currently the only theorem prover supporting full TFF0. Note that such
a modification of TPTP would make multiple forms of if-then-else and
let-in redundant. It will also make it possible to directly represent the
SMT-LIB core theory.

We note that our changes and modifications on TFF0 can also be
applied to the TFF1 language of TPTP [18]. TFF1 is a polymorphic
extension of TFF0 and its formalisation does not treat the Boolean sort.
Extending our work to TFF1 should not be hard but has to be done in
detail.

1.6 Related Work
Handling Boolean terms as formulas is common in the SMT commu-
nity. The SMT-LIB project [10] defines its core logic as first-order logic
extended with the distinguished first-class Boolean sort and the let-in ex-
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pression used for local bindings of variables. The core theory of SMT-LIB
defines logical connectives as Boolean functions and the ad-hoc polymor-
phic if-then-else (ite) function, used for conditional expressions. The
language FOOL defined here extends the SMT-LIB core language with
local function definitions, using let-in expressions defining functions of
arbitrary, and not just zero, arity. Thus, FOOL contains both this lan-
guage and the TFF0 subset of TPTP. Further, we present a translation
of FOOL to FOL and show how one can improve superposition theorem
provers to reason with the Boolean sort.

Efficient superposition theorem proving in finite domains, such as the
Boolean domain, is also discussed in [38]. The approach of [38] sometimes
falls back to enumerating instances of a clause by instantiating finite
domain variables with all elements of the corresponding domains. We
point out here that for the Boolean (i.e., two-element) domain there is
a simpler solution. However, the approach of [38] also allows one to
handle domains with more than two elements. One can also generalise
our approach to arbitrary finite domains by using binary encodings of
finite domains, however, this will necessarily result in loss of efficiency,
since a single variable over a domain with 2k elements will become k
variables in our approach, and similarly for function arguments.

1.7 Conclusion
We defined first-order logic with the first class Boolean sort (FOOL). It
extends ordinary many-sorted first-order logic (FOL) with (i) the Boolean
sort such that terms of this sort are indistinguishable from formulas and
(ii) if-then-else and let-in expressions. The semantics of let-in expres-
sions in FOOL is essentially their semantics in functional programming
languages, when they are not used for recursive definitions. In particular,
non-recursive local functions can be defined and function symbols can be
bound to a different sort in nested let-in expressions.

We argued that these extensions are useful in reasoning about prob-
lems coming from program analysis and interactive theorem proving. The
extraction of properties from certain program definitions (especially in
functional programming languages) into FOOL formulas is more straight-
forward than into ordinary FOL formulas and potentially more efficient.
In a similar way, a more straightforward translation of certain higher-
order formulas into FOOL can facilitate proof automation in interactive
theorem provers.
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FOOL is a modification of FOL and reasoning in it reduces to reason-
ing in FOL. We gave a translation of FOOL to FOL that can be used
for proving theorems in FOOL in a first-order theorem prover. We fur-
ther discussed a modification of superposition calculus that can reason
efficiently in presence of the Boolean sort. Finally, we pointed out that
the TPTP language can be changed to support FOOL, which will also
simplify some parts of the TPTP syntax.

Implementation of theorem proving support for FOOL, including its
superposition-friendly translation to CNF, is an important task for future
work. Further, we are also interested in extending FOOL with theories,
such as the theory of integer linear arithmetic and arrays.
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Chapter 2

The Vampire and the FOOL

Evgenii Kotelnikov, Laura Kovács,
Giles Reger and Andrei Voronkov

Abstract. This paper presents new features recently implemented in
the theorem prover Vampire, namely support for first-order logic with
a first class Boolean sort (FOOL) and polymorphic arrays. In addition
to having a first class Boolean sort, FOOL also contains if-then-else
and let-in expressions. We argue that presented extensions facilitate
reasoning-based program analysis, both by increasing the expressivity of
first-order reasoners and by gains in efficiency.
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2.1 Introduction
Automated program analysis and verification requires discovering and
proving program properties. These program properties are checked using
various tools, including theorem provers. The translation of program
properties into formulas accepted by a theorem prover is not straightfor-
ward because of a mismatch between the semantics of the programming
language constructs and that of the input language of the theorem prover.
If program properties are not directly expressible in the input language,
one should implement a translation of such program properties to the
language. Such translations can be very complex and thus error prone.

The performance of a theorem prover on the result of a translation cru-
cially depends on whether the translation introduces formulas potentially
making the prover inefficient. Theorem provers, especially first-order ones,
are known to be very fragile with respect to the input. Expressing pro-
gram properties in the “right” format therefore requires solid knowledge
about how theorem provers work and are implemented — something that
a user of a verification tool might not have. Moreover, it can be hard
to efficiently reason about certain classes of program properties, unless
special inference rules and heuristics are added to the theorem prover.
For example, [36] shows a considerable gain in performance on proving
properties of data collections by using a specially designed extensionality
resolution rule.

If a theorem prover natively supports expressions that mirror the
semantics of programming language constructs, we solve both above men-
tioned problems. First, the users do not have to design translations of such
constructs. Second, the users do not have to possess a deep knowledge of
how the theorem prover works — the efficiency becomes the responsibility
of the prover itself.

In this work we present new features recently implemented in the
theorem prover Vampire [57] to natively support mirroring programming
language constructs in its input language. They include (i) FOOL [53],
that is the extension of first-order logic by a first-class Boolean sort,
if-then-else and let-in expressions, and (ii) polymorphic arrays.

This paper is structured as follows. Section 2.2 presents how FOOL is
implemented in Vampire and focuses on new extensions to the TPTP input
language [83] of first-order provers. Section 2.2 extends the TPTP lan-
guage of monomorphic many-sorted first-order formulas, called TFF0 [90],
and allows users to treat the built-in Boolean sort $o as a first class sort.
Moreover, it introduces expressions $ite and $let , which unify various
TPTP if-then-else and let-in expressions.
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Section 2.3 presents a formalisation of a polymorphic theory of arrays
in TPTP and its implementation in Vampire. It extends TPTP with
features of the TFF1 language [18] of rank-1 polymorphic first-order
formulas, namely, sort arguments for the built-in array sort constructor
$array . Sort variables however are not supported.

We argue that these extensions make the translation of properties of
some programs to TPTP easier. To support this claim, in Section 2.4
we discuss representation of various programming and other constructs
in the extended TPTP language. We also give a linear translation of the
next state relation for any program with assignments, if-then-else, and
sequential composition.

Experiments with theorem proving with FOOL formulas are described
in Section 2.5. In particular, we show that the implementation of a new
inference rule, called FOOL paramodulation, improves performance of
theorem provers using superposition calculus.

Finally, Section 2.6 discusses related work and Section 2.7 outlines
future work.

Summary of the main results.

• We describe an implementation of first-order logic with a first-class
Boolean sort. This bridges the gap between input languages for
theorem provers and logics and tools used in program analysis. We
believe it is a first ever implementation of first-class Boolean sorts
in superposition theorem provers.

• We extend and simplify the TPTP language [83], by providing more
powerful and more uniform representations of if-then-else and
let-in expressions. To the best of our knowledge, Vampire is the
only superposition theorem prover implementing these constructs.

• We formalise and describe an implementation in Vampire of a poly-
morphic theory of arrays. Again, we believe that Vampire is the
only superposition theorem prover implementing this theory.

• We give a simple extension of FOOL, allowing to express the next
state relation of a program as a Boolean formula which is linear in
the size of the program. This Boolean formula captures the exact
semantics of the program and can be used by a first-order theorem
prover. We are not aware of any other work on extending theo-
rem provers with support for representing fragments of imperative
programs.
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• We demonstrate usability and high performance of our implementa-
tion on two collections of examples, coming from the higher-order
part of the TPTP library and from the Isabelle interactive the-
orem prover [67]. Our experimental results show that Vampire
outperforms systems which could previously be used to solve such
problems: higher-order theorem provers and satisfiability modulo
theory (SMT) solvers.

The paper focuses on new, practical features extending first-order the-
orem provers for making them better suited for applications of reasoning
in various theories, program analysis and verification. While the paper
describes implementation details and challenges in the Vampire theorem
prover, the described features and their implementation can be carried
out in any other first-order prover.

Summarising, we believe that our paper advances the state-of-the-art
in formal certification of programs and proofs. With the use of FOOL
and polymorphic arrays, we bring first-order theorem proving closer to
program logics and make first-order theorem proving better suited for pro-
gram analysis and verification. We also believe that an implementation of
FOOL advances automation of mathematics, making many problems us-
ing the Boolean type directly understood by a first-order theorem prover,
while they previously were treated as higher-order problems.

2.2 First Class Boolean Sort
Our recent work [53] presented a modification of many-sorted first-order
logic that contains a Boolean sort with a fixed interpretation and treats
terms of the Boolean sort as formulas. We called this logic FOOL, stand-
ing for first-order logic (FOL) + Boolean sort. FOOL extends FOL by (i)
treating Boolean terms as formulas; (ii) if-then-else expressions; and
(iii) let-in expressions. There is a model-preserving transformation of
FOOL formulas to FOL formulas, hence an implementation of this trans-
formation makes it possible to prove FOOL formulas using a first-order
theorem prover.

The language of FOOL is, essentially, a superset of the core language of
SMT-LIB 2 [10], the library of problems for SMT solvers. The difference
between FOOL and the core language is that the former has richer let-
in expressions, which support local definitions of functions symbols of
arbitrary arity, while the latter only supports local binding of variables.

FOOL can be regarded as the smallest superset of the SMT-LIB 2
Core language and TFF0. An implementation of a translation of FOOL
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to FOL thus also makes it possible to translate SMT-LIB problems to
TPTP. Consider, for example, the following tautology, written in the
SMT-LIB syntax: (exists ((x Bool)) x) . It quantifies over Boolean
variables and uses a Boolean variable as a formula. Neither is allowed
in the standard TPTP language, but can be directly expressed in an
extended TPTP that represents FOOL.

The rest of this section presents features of FOOL not included in
FOL, explains how they are implemented in Vampire and how they can
be represented in an extended TPTP syntax understood by Vampire.

2.2.1 Proving with the Boolean Sort
Vampire supports many-sorted predicate logic and the TFF0 syntax for
this logic. In many-sorted predicate logic all sorts are uninterpreted, while
the Boolean sort should be interpreted as a two-element set. There are
several ways to support the Boolean sort in a first-order theorem prover,
for example, one can axiomatise it by adding two constants true and
false of this sort and two axioms: (∀x : bool)(x .= true ∨ x .= false) and
true 6 .= false. However, as we discuss in [53], using this axiomatisation
in a superposition theorem prover may result in performance problems
caused by self-paramodulation of x .= true ∨ x .= false.

To overcome this problem, in [53] we proposed the following modifi-
cation of the superposition calculus.

1. Use a special simplification ordering that makes the constants true
and false smallest terms of the sort bool and also makes true greater
than false.

2. Add the axiom true 6 .= false.

3. Add a special inference rule, called FOOL paramodulation, of the
form

C[s]
C[true] ∨ s .= false

,

where

(a) s is a term of the sort bool other than true and false;
(b) s is not a variable;

Both ways of dealing with the Boolean sort are supported in Vam-
pire. The option --fool_paramodulation, which can be set to on or
off, chooses one of them. The default value is on, which enables the
modification.
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Vampire uses the TFF0 subset of the TPTP syntax, which does not
fully support FOOL. To write FOOL formulas in the input, one uses the
standard TPTP notation: $o for the Boolean sort, $true for true and
$false for false. There are, however, two ways to output the Boolean
sort and the constants. One way will use the same notation as in the
input and is the default, which is sufficient for most applications. The
other way can be activated by the option --show_fool on, it will

1. denote as $bool every occurrence of bool as a sort of a variable or
an argument (to a function or a predicate symbol);

2. denote as $$true every occurrence of true as an argument; and

3. denote as $$false every occurrence of false as an argument.

Note that an occurrence of any of the symbols $bool , $$true or $$false
anywhere in an input problem is not recognised as syntactically correct
by Vampire.

Setting --show_fool to on might be necessary if Vampire is used as
a front-end to other reasoning tools. For example, one can use Vampire
not only for proving, but also for preprocessing the input problem or
converting it to clausal normal form. To do so, one uses the options
--mode preprocess and --mode clausify, respectively. The output of
Vampire can then be passed to other theorem provers, that either only
deal with clauses or do not have sophisticated preprocessing. Setting
--show_fool to on appends a definition of a sort denoted by $bool and
constants denoted by $$true and $$false of this sort to the output.
That way the output will always contain syntactically correct TFF0 for-
mulas, which might not be true if the option is set to off (the default
value).

Every formula of the standard FOL is syntactically a FOOL formula
and has the same models. Vampire does not reason in FOOL natively,
but rather translates the input FOOL formulas into FOL formulas in a
way that preserves models. This is done at the first stage of preprocessing
of the input problem.

Vampire implements the translation of FOOL formulas to FOL given
in [53]. It involves replacing parts of the problem that are not syntacti-
cally correct in the standard FOL by applications of fresh function and
predicate symbols. The set of assumptions is then extended by formulas
that define these symbols. Individual steps of the translation are displayed
when the --show_preprocessing option is set to on.
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In the next subsections we present the features of FOOL that are not
present in FOL together with their syntax in the extended TFF0 and
their implementation in Vampire.

2.2.2 Quantifiers over the Boolean Sort
FOOL allows quantification over bool and usage of Boolean variables as
formulas. For example, the formula (∀x : bool)(x ∨ ¬x) is a syntactically
correct tautology in FOOL. It is not however syntactically correct in the
standard FOL where variables can only occur as arguments.

Vampire translates Boolean variables to FOL in the following way.
First, every formula of the form x ⇔ y, where x and y are Boolean
variables, is replaced by x

.= y. Then, every occurrence of a Boolean
variable x anywhere other than in an argument is replaced by x .= true.
For example, the tautology (∀x : bool)(x ∨ ¬x) will be converted to the
FOL formula (∀x : bool)(x .= true ∨ x 6 .= true) during preprocessing.

Note that it is possible to directly express quantified Boolean formulas
(QBF) in FOOL, and use Vampire to reason about them.

TFF0 does not support quantification over Booleans. Vampire sup-
ports an extended version of TFF0 where the sort symbol $o is allowed
to occur as the sort of a quantifier and Boolean variables are allowed to
occur as formulas. The formula (∀x : bool)(x ∨ ¬x) can be expressed in
this syntax as ![X:$o]: (X | ∼X) .

2.2.3 Functions and Predicates
with Boolean Arguments

Functions and predicates in FOOL are allowed to take Booleans as argu-
ments. For example, one can define the logical implication as a binary
function impl of the type bool × bool → bool using the following axiom:

(∀x : bool)(∀y : bool)(impl(x, y)⇔ ¬x ∨ y).

Since Vampire supports many-sorted logic, this feature requires no
additional implementation, apart from changes in the parser.

In TFF0, functions and predicates cannot have arguments of the sort
$o . In the version of TFF0, supported by Vampire, this restriction is
removed. Thus, the definition of impl can be expressed as follows:

tff(impl, type, impl: ($o * $o) > $o).
tff(impl_definition, axiom,

![X: $o, Y: $o]: (impl(X, Y) <=> (∼X | Y))).
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2.2.4 Formulas as Arguments
Unlike the standard FOL, FOOL does not make a distinction between
formulas and Boolean terms. It means that a function or a predicate
can take a formula as a Boolean argument, and formulas can be used as
arguments to equality between Booleans. For example, with the definition
of impl, given earlier, we can express in FOOL that P is a graph of a
(partial) function of the type σ → τ as follows:

(∀x : σ)(∀y : τ)(∀z : τ)impl(P (x, y) ∧ P (x, z), y .= z). (2.1)

Note that the definition of impl could as well use equality instead of
equivalence.

In order to support formulas occurring as arguments, Vampire does
the following. First, every expression of the form ϕ

.= ψ is replaced by
ϕ⇔ ψ. Then, for each formula ψ occurring as an argument the following
translation is applied. If ψ is a nullary predicate > or ⊥, it is replaced
by true or false, respectively. If ψ is a Boolean variable, it is left as is.
Otherwise, the translation is done in several steps. Let x1, . . . , xn be all
free variables of ψ and σ1, . . . , σn be their sorts. Then Vampire

1. introduces a fresh function symbol g of the type

σ1 × . . .× σn → bool;

2. adds the definition

(∀x1 : σ1) . . . (∀xn : σn)(ψ ⇔ g(x1, . . . , xn) .= true)

to its set of assumptions;

3. replaces ψ by g(x1, . . . , xn).

For example, after this translation has been applied for both arguments
of impl, (2.1) becomes

(∀x : σ)(∀y : σ)(∀z : σ)impl(g1(x, y, z), g2(y, z)),

where g1 and g2 are fresh function symbol of the types σ × τ × τ → bool
and τ × τ → bool, respectively, defined by the following formulas:

1. (∀x : σ)(∀y : τ)(∀z : τ)(P (x, y) ∧ P (x, z)⇔ g1(x, y, z) .= true);

2. (∀y : τ)(∀z : τ)(y .= z ⇔ g2(y, z) .= true).
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TFF0 does not allow formulas to occur as arguments. The extended
version of TFF0, supported by Vampire, removes this restriction for
arguments of the Boolean sort. Formula (2.1) can be expressed in this
syntax as follows:

![X: s, Y: t, Z: t]: impl(p(X, Y) & p(X, Z), Y = Z)

For a more interesting example, consider the following logical puzzle
taken from the TPTP problem PUZ081:

A very special island is inhabited only by knights and knaves.
Knights always tell the truth, and knaves always lie. You
meet two inhabitants: Zoey and Mel. Zoey tells you that Mel
is a knave. Mel says, ‘Neither Zoey nor I are knaves’. Who is
a knight and who is a knave?

To solve the puzzle, one can formalise it as a problem in FOOL and
give a corresponding extended TFF0 representation to Vampire. Let zoye
and mel be terms of a fixed sort person that represent Zoye and Mel,
respectively. Let Says be a predicate that takes a term of the sort person
and a Boolean term. We will write Says(p, s) to denote that a person
p made a logical statement s. Let Knight and Knave be predicates that
take a term of the sort person. We will write Knight(p) or Knave(p) to
denote that a person p is a knight or a knave, respectively. We will express
the fact that knights only tell the truth and knaves only lie by axioms
(∀p : person)(∀s : bool)(Knight(p)∧ Says(p, s)⇒ s) and (∀p : person)(∀s :
bool)(Knave(p) ∧ Says(p, s) ⇒ ¬s), respectively. We will express the
fact that every person is either a knight or a knave by the axiom (∀p :
person)(Knight(p)⊕Knave(p)), where ⊕ is the “exclusive or” connective.
Finally, we will express the statements that Zoye and Mel make in the
puzzle by axioms Says(zoye,Knave(mel)) and Says(mel,¬Knave(zoye)∧
¬Knave(mel)), respectively.

The axioms and definitions, given above, can be written in the ex-
tended TFF0 syntax in the following way.

tff(person, type, person: $tType).
tff(says, type, says: (person * $o) > $o).

tff(knight, type, knight: person > $o).
tff(knights_always_tell_truth, axiom,

![P: person, S: $o]:
(knight(P) & says(P, S) => S)).
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tff(knave, type, knave: person > $o).
tff(knaves_always_lie, axiom,

![P: person, S: $o]:
(knave(P) & says(P, S) => ∼S)).

tff(very_special_island, axiom,
![P: person]: (knight(P) <∼> knave(P))).

tff(zoey, type, zoey: person).
tff(mel, type, mel: person).

tff(zoye_says, hypothesis,
says(zoey, knave(mel))).

tff(mel_says, hypothesis,
says(mel, ∼knave(zoey) & ∼knave(mel))).

Vampire accepts this code, finds that the problem is satisfiable and
outputs the saturated set of clauses. There one can see that Zoey is a
knight and Mel is a knave. Note that the existing formalisations of this
puzzle in TPTP (files PUZ081^1.p, PUZ081^2.p and PUZ081^3.p) employ
the language of higher-order logic (THF) [88]. However, as we have just
shown, one does not need to resort to reasoning in higher-order logic for
this problem, and can enjoy the efficiency of reasoning in first-order logic.

This example makes one think about representing sentences in various
epistemic or first-order modal logics in FOOL.

2.2.5 if-then-else Expressions
FOOL contains expressions of the form if ψ then s else t, where ψ is
a Boolean term, and s and t are terms of the same sort. The semantics
of such expressions mirrors the semantics of conditional expressions in
programming languages.

if-then-else expressions are convenient for expressing formulas com-
ing from program analysis and interactive theorem provers. For example,
consider the max function of the type Z × Z → Z that returns the
maximum of its arguments. Its definition can be expressed in FOOL as

(∀x : Z)(∀y : Z)(max(x, y) .= if x ≥ y then x else y). (2.2)

To handle such expressions, Vampire translates them to FOL. This
translation is done in several steps. Let x1, . . . , xn be all free variables of
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ψ, s and t, and σ1, . . . , σn be their sorts. Let τ be the sort of both s and
t. The steps of translation depend on whether τ is bool or a different sort.
If τ is not bool, Vampire

1. introduces a fresh function symbol g of the type

σ1 × . . .× σn → τ ;

2. adds the definitions

(∀x1 : σ1) . . . (∀xn : σn)(ψ ⇒ g(x1, . . . , xn) .= s),
(∀x1 : σ1) . . . (∀xn : σn)(¬ψ ⇒ g(x1, . . . , xn) .= t)

to its set of assumptions;

3. replaces if ψ then s else t by g(x1, . . . , xn).

If τ is bool, the following is different in the steps of translation:

1. a fresh predicate symbol g of the type σ1 × . . .× σn is introduced
instead; and

2. the added definitions use equivalence instead of equality.

For example, after this translation (2.2) becomes

(∀x : Z)(∀y : Z)(max(x, y) .= g(x, y)),

where g is a fresh function symbol of the type Z×Z→ Z defined by the
following formulas:

1. (∀x : Z)(∀y : Z)(x ≥ y ⇒ g(x, y) .= x);

2. (∀x : Z)(∀y : Z)(x 6≥ y ⇒ g(x, y) .= y).

TPTP has two different expressions for if-then-else: $ite_t for
constructing terms and $ite_f for constructing formulas. $ite_t takes
a formula and two terms of the same sort as arguments. $ite_f takes
three formulas as arguments.

Since FOOL does not distinguish formulas and Boolean terms, it does
not require separate expressions for the formula-level and term-level if-
then-else. The extended version of TFF0, supported by Vampire, uses
a new expression $ite , that unifies $ite_t and $ite_f . $ite takes a
formula and two terms of the same sort as arguments. If the second and
the third arguments are Boolean, such $ite expression is equivalent to
$ite_f , otherwise it is equivalent to $ite_t .
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Consider, for example, the above definition of max . It can be encoded
in the extended TFF0 as follows.

tff(max, type, max: ($int * $int) > $int).
tff(max_definition, axiom,

![X: $int, Y: $int]:
(max(X, Y) = $ite($greatereq(X, Y), X, Y))).

It uses the TPTP notation $int for the sort of integers and $greatereq
for the greater-than-or-equal-to comparison of two numbers.

Consider now the following valid property of max:

(∀x : Z)(∀y : Z)(if max(x, y) .= x then x ≥ y else y ≥ x). (2.3)

Its encoding in the extended TFF0 can use the same $ite expression:

![X: $int, Y: $int]:
$ite(max(X, Y) = X, $greatereq(X, Y), $greatereq(Y, X)).

Note that TFF0 without $ite has to differentiate between terms and
formulas, and so requires to use $ite_t in (2.2) and $ite_f in (2.3).

2.2.6 let-in Expressions
FOOL contains let-in expressions that can be used to introduce local
function definitions. They have the form

let f1(x1
1 : σ1

1 , . . . , x
1
n1

: σ1
n1

) = s1;
. . .

fm(xm1 : σm1 , . . . , xmnm
: σmnm

) = sm

in t,

(2.4)

where

1. m ≥ 1;

2. f1, . . . , fm are pairwise distinct function symbols;

3. ni ≥ 0 for each 1 ≤ i ≤ m;

4. xi1 . . . , xini
are pairwise distinct variables for each 1 ≤ i ≤ m; and

5. s1, . . . , sm and t are terms.
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The semantics of let-in expressions in FOOL mirrors the semantics
of simultaneous non-recursive local definitions in programming languages.
That is, s1, . . . , sm do not use the bindings of f1, . . . , fm created by this
definition.

Note that an expression of the form (2.4) is not in general equivalent
to m nested let-ins

let f1(x1
1 : σ1

1 , . . . , x
1
n1

: σ1
n1

) = s1 in

. . .
let fm(xm1 : σm1 , . . . , xmnm

: σmnm
) = sm in

t.

(2.5)

The main application of let-in expressions is in problems coming from
program analysis, namely modelling of assignments. Consider for example
the following code snippet featuring operations over an integer array .

array[3] := 5;
array[2] + array[3];

It can be translated to FOOL in the following way. We represent the
integer array as an uninterpreted function array of the type Z → Z

that maps an index to the array element at that index. The assignment
of an array element can be translated to a combination of let-in and
if-then-else.

let array(i : Z) = if i .= 3 then 5 else array(i) in

array(2) + array(3)
(2.6)

Multiple bindings in a let-in expression can be used to concisely
express simultaneous assignments that otherwise would require renaming.
In the following example, constants a and b are swapped by a let-in
expression. The resulting formula is equivalent to f(b, a).

let a = b; b = a in f(a, b) (2.7)

In order to handle let-in expressions Vampire translates them to
FOL. This is done in three stages for each expression in (2.4).

1. For each function symbol fi where 0 ≤ i < m that occurs freely in
any of si+1, . . . , sm, introduce a fresh function symbol gi. Replace
all free occurrences of fi in t by gi.
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2. Replace the let-in expression by an equivalent one of the form
(2.5). This is possible because the necessary condition was satisfied
by the previous step.

3. Apply a translation to each of the let-in expression with a single
binding, starting with the innermost one.

The translation of an expression of the form

let f(x1 : σ1, . . . , xn : σn) = s in t

is done by the following sequence of steps. Let y1, . . . , ym be all free
variables of s and t, and τ1, . . . , τm be their sorts. Note that the variables
in x1, . . . , xn are not necessarily disjoint from the variables in y1, . . . , ym.
Let σ0 be the sort of s. The steps of translation depend on whether σ0 is
bool and not. If σ0 is not bool, Vampire

1. introduces a fresh function symbol g of the type

σ1 × . . .× σn × τ1 × . . .× τm → σ0;

2. adds to the set of assumptions the definition

(∀z1 : σ1) . . . (∀zn : σn)(∀y1 : τ1) . . . (∀ym : τm)
(g(z1, . . . , zn, y1, . . . , ym) .= s′),

where z1, . . . , zn is a fresh sequence of variables and s′ is obtained
from s by replacing all free occurrences of x1, . . . , xn by z1, . . . , zn,
respectively; and

3. replaces let f(x1 : σ1, . . . , xn : σn) = s in t by t′, where t′ is ob-
tained from t by replacing all bound occurrences of y1, . . . , ym by
fresh variables and each application f(t1, . . . , tn) of a free occurrence
of f by g(t1, . . . , tn, y1, . . . , ym).

If σ0 is bool, the steps of translation are different:

1. a fresh predicate symbol of the type

σ1 × . . .× σn × τ1 × . . .× τm

is introduced instead;

2. the added definition uses equivalence instead of equality.
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For example, after this translation (2.6) becomes g(2) + g(3), where
g is a fresh function symbol of the type Z→ Z defined by the following
formula:

(∀i : Z)(g(i) .= if i .= 3 then 5 else array(i)).

The example (2.7) is translated in the following way. First, the let-
in expression is translated to the form (2.5). The constant a has a free
occurrence in the body of b, therefore it is replaced by a fresh constant
a′. The formula (2.7) becomes

let a′ = b in

let b = a in

f(a′, b).

Then, the translation is applied to both let-in expressions with a single
binding and the resulting formula becomes f(a′′, b′), where a′′ and b′ are
fresh constants, defined by formulas a′′ .= b and b′ .= a.

TPTP has four different expressions for let-in: $let_tt and $let_ft
for constructing terms, and $let_tf and $let_ff for constructing for-
mulas. All of them denote a single binding. $let_tt and $let_tf
denote a binding of a function symbol, whereas $let_ft and $let_ff
denote a binding of a predicate symbol. All four expressions take a (pos-
sibly universally quantified) equation as the first argument and a term
(in case of $let_tt and $let_ft ) or a formula (in case of $let_tf and
$let_ff ) as the second argument. TPTP does not provide any notation
for let-in expressions with multiple bindings.

Similarly to if-then-else, let-in expressions in FOOL do not need
different notation for terms and formulas. The modification of TFF0
supported by Vampire introduces a new $let expression, that unifies
$let_tt , $let_ft , $let_tf and $let_ff , and extends them to sup-
port multiple bindings. Depending on whether the binding is of a function
or predicate symbol and whether the second argument of the expression
is term or formula, a $let expression is equivalent to one of $let_tt ,
$let_ft , $let_tf and $let_ff .

The new $let expressions use different syntax for bindings. Instead
of a quantified equation, they use the following syntax: a function symbol
possibly followed by a list of variable arguments in parenthesis, followed
by the := operator and the body of the binding. Similarly to quantified
variables, variable arguments are separated with commas and each vari-
able might include a sort declaration. A sort declaration can be omitted,
in which case the variable is assumed to the be of the sort of individuals.
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Formula (2.6) can be written in the extended TFF0 with the TPTP
interpreted function $sum , representing integer addition, as follows:

$let(array(I:$int) := $ite(I = 3, 5, array(I)),
$sum(array(2), array(3))).

The same $let expression can be used for multiple bindings. For
that, the bindings should be separated by a semicolon and passed as the
first argument. The formula (2.7) can be written using $let as follows.

$let(a := b; b := a, f(a, b)))

Overall, $ite and $let expressions provide a more concise syntax for
TPTP formulas than the TFF0 variations of if-then-else and let-in
expressions. To illustrate this point, consider the following snippet of
TPTP code, taken from the TPTP problem SYN000_2.

tff(let_binders, axiom, ![X: $i]:
$let_ff(![Y1: $i, Y2: $i]: (q(Y1, Y2) <=> p(Y1)),
q($let_tt(![Z1: $i]:

(f(Z1) = g(Z1, b)), f(a)), X) &
p($let_ft(![Y3: $i, Y4: $i]: (q(Y3, Y4) <=>

$ite_f(Y3 = Y4, q(a, a), q(Y3, Y4))),
$ite_t(q(b, b), f(a), f(X)))))).

It uses both of the TFF0 variations of if-then-else and three different
variations of let-in. The same snippet can be expressed more concisely
using $ite and $let expressions.

tff(let_binders, axiom, ![X: $i]:
$let(q(Y1, Y2) := p(Y1),

q($let(f(Z1) := g(Z1, b), f(a)), X) &
p($let(q(Y3, Y4) := $ite(Y3 = Y4,

q(a, a), q(Y3, Y4))),
$ite(q(b, b), f(a), f(X)))))).

2.3 Polymorphic Theory of Arrays
Using built-in arrays and reasoning in the first-order theory of arrays
are common in program analysis, for example for finding loop invariants
in programs using arrays [56]. Previous versions of Vampire supported
theories of integer arrays and arrays of integer arrays [57]. No other array
sorts were supported and in order to implement one it would be necessary
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to hardcode a new sort and add the theory axioms corresponding to
that sort. In this section we describe a polymorphic theory of arrays
implemented in Vampire.

2.3.1 Definition
The polymorphic theory of arrays is the union of theories of arrays
parametrised by two sorts: sort τ of indexes and sort σ of values. It
would have been proper to call these theories the theories of maps from τ

to σ, however we decided to call them arrays for the sake of compatibility
with arrays as defined in SMT-LIB.

A theory of arrays is a first-order theory that contains a sort array(τ, σ),
function symbols select : array(τ, σ) × τ → σ and store : array(τ, σ) ×
τ × σ → array(τ, σ), and three axioms. The function symbol select rep-
resents a binary operation of extracting an array element by its index.
The function symbol store represents a ternary operation of updating an
array at a given index with a given value. The array axioms are:

1. read-over-write 1

(∀a : array(τ, σ))(∀v : σ)(∀i : τ)(∀j : τ)
(i .= j ⇒ select(store(a, i, v), j) .= v);

2. read-over-write 2

(∀a : array(τ, σ))(∀v : σ)(∀i : τ)(∀j : τ)
(i 6 .= j ⇒ select(store(a, i, v), j) .= select(a, j));

3. extensionality

(∀a : array(τ, σ))(∀b : array(τ, σ))
((∀i : τ)(select(a, i) .= select(b, i))⇒ a

.= b).

We will call every concrete instance of the theory of arrays for concrete
sorts τ and σ the (τ, σ)-instance.

One can use the polymorphic theory of arrays to express program
properties. Recall the code snippet involving arrays mentioned in Sec-
tion 2.2:

array[3] := 5;
array[2] + array[3];
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Formula (2.6) used an interpreted function to represent the array in this
code. We can alternatively use arrays to represent it as follows

let array = store(array, 3, 5) in

select(array, 2) + select(array, 3)
(2.8)

2.3.2 Implementation in Vampire
Vampire implements reasoning in the polymorphic theory of arrays by
adding corresponding sorts axioms when the input uses array sorts and/or
functions.

Whenever the input problem uses a sort array(τ, σ), Vampire adds this
sort and function symbols select and store of the types array(τ, σ)×τ → σ

and array(τ, σ)× τ × σ → array(τ, σ), respectively.
If the input problem contains store, Vampire adds the following axioms

for the sorts τ and σ used in the corresponding array theory instance:

(∀a : array(τ, σ))(∀i : τ)(∀v : σ)
(select(store(a, i, v), i) .= v)

(2.9)

(∀a : array(τ, σ))(∀i : τ)(∀j : τ)(∀v : σ)
(i 6 .= j ⇒ select(store(a, i, v), j) .= select(a, j))

(2.10)

(∀a : array(τ, σ))(∀b : array(τ, σ))
(a 6 .= b⇒ (∃i : τ)(select(a, i) 6 .= select(b, i)))

(2.11)

These axioms are equivalent to the axioms read-over-write 1, read-over-
write 2 and extensionality.

If the input contains only select but not store for this instance, then
only extensionality (2.11) is added.

Theory axioms are not added when the --theory_axioms option is
set to off (the default value is on), which leaves an option for the user
to try her or his own axiomatisation of arrays.

Vampire uses the extensionality resolution rule [36] to efficiently reason
with the extensionality axiom.

To express arrays, the TPTP syntax extension supported by Vam-
pire allows, for every pair of sorts τ and σ, denoted by t and s in the
TFF0 syntax, to denote the sort array(τ, σ) by $array(s, t) . Func-
tion symbols select and store can be expressed as ad-hoc polymorphic
$select and $store, respectively for every pairs of sorts τ, σ. Previ-
ously, the theories of integer arrays and arrays of integer arrays were
represented as sorts $array1 and $array2 in Vampire, with the corre-
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sponding sort-specific function symbols $select1 , $select2 , $store1
and $store2 . Our new implementation in Vampire, with support for
the polymorphic theory of arrays, deprecates these two concrete array
theories. Instead, one can now use the sorts $array($int, $int) and
$array($int, $array($int, $int)) . For example, formula (2.8) can
be written in the extended TFF0 syntax as follows:
$let(array := $store(array, 3, 5),

$sum($select(array, 2), $select(array, 3))).

2.3.3 Theory of Boolean Arrays
An interesting special case of the polymorphic theory of arrays is the
theory of Boolean arrays. In that theory the select function has the
type array(τ, bool) × τ → bool and the store function has the type
array(τ, bool)×τ×bool → array(τ, bool). This means that applications of
select can be used as formulas and store can have a formula as the third
argument.

Vampire implements the theory of Booleans arrays similarly to other
sorts, by adding theory axioms when the option --theory_axioms is
enabled. However, the theory axioms are different for the following reason.
The axioms of the theory of Boolean arrays are syntactically correct in
FOOL but not in FOL, because they use quantification over Booleans.
However, Vampire adds theory axioms only after a translation of FOOL
to FOL. For this reason, Vampire uses the following set of axioms for
Boolean arrays:

(∀a : array(τ, bool))(∀i : τ)(∀v : bool)
(select(store(a, i, v), i)⇔ (v .= true))

(∀a : array(τ, bool))(∀i : τ)(∀j : τ)(∀v : bool)
(i 6 .= j ⇒ select(store(a, i, v), j)⇔ select(a, j))

(∀a : array(τ, bool))(∀b : array(τ, bool))
(a 6 .= b⇒ (∃i : τ)(select(a, i)⊕ select(b, i)))

where ⊕ is the “exclusive or” connective.
One can use the theory of Boolean arrays, for example, to express

properties of bit vectors. In the following example we give a formali-
sation of a basic property of XOR encryption, where the key, the mes-
sage and the cipher are bit vectors. Let encrypt be a function of the
type array(Z, bool) × array(Z, bool) → array(Z, bool). We will write
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encrypt(message, key) to denote the result of bit-wise application of the
XOR operation to message and key. For simplicity we will assume that
the message and the key are of equal length. The definition of encrypt
can be expressed with the following axiom:

(∀message : array(Z, bool))(∀key : array(Z, bool))(∀i : Z)
(select(encrypt(message, key), i) .=

select(message, i)⊕ select(key, i)).

An important property of XOR encryption is its vulnerability to the
known plaintext attack. It means that knowing a message and its cipher,
one can obtain the key that was used to encrypt the message by encrypting
the message with the cipher. This property can be expressed by the
following formula.

(∀plaintext : array(Z, bool))(∀cipher : array(Z, bool))
(∀key : array(Z, bool))(cipher .= encrypt(plaintext, key)⇒

key .= encrypt(plaintext, cipher))

The sort array(Z, bool) is represented in the extended TFF0 syntax as
$array ( $int , $bool ) . The presented property of XOR encryption
can be expressed in the extended TFF0 in the following way.

tff(encrypt, type, encrypt: ($array($int, $o) *
$array($int, $o)) > $array($int, $o)).

tff(xor_encryption, axiom,
![Message: $array($int, $o),
Key: $array($int, $o), I: $int]:
($select(encrypt(Message, Key), I) =
($select(Message, I) <∼> $select(Key,I)))).

tff(known_plaintext_attack, conjecture,
![Plaintext: $array($int, $o),
Cipher: $array($int, $o), Key: $array($int, $o)]:
((Cipher = encrypt(Plaintext, Key)) =>
(Key = encrypt(Plaintext, Cipher)))).
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2.4 Program Analysis with the New Extensions
In this section we illustrate how FOOL makes first-order theorem provers
better suited to applications in program analysis and verification. Firstly,
we give concrete examples of the use of FOOL for expressing program
properties. We avoid various program analysis steps, such as SSA form
computations and renaming program variables; instead we show how
program properties can directly be expressed in FOOL. We also present
a technique for automatically generating the next state relation of any
program with assignments, if-then-else, and sequential composition.
For doing so, we introduce a simple extension of FOOL, allowing for a
general translation that is linear in the size of the program. This is a new
result intended to understand which extensions of first-order logic are
adequate for naturally representing fragments of imperative programs.

2.4.1 Encoding the Next State Relation
Consider the program given in Figure 2.1, written in a C-like syntax, using
a sequence of two conditional statements. The program first computes the
maximal value max of two integers x and y and then adds the absolute
value of max to x. A safety assertion, in FOL, is specified at the end of
the loop, using the assert construct. This program is clearly safe, the
assertion is satisfied. To prove program safety, one needs to reason about
the program’s transition relation, in particular reason about conditional
statements, and express the final value of the program variable res. The
partial correctness of the program of Figure 2.1 can be automatically
expressed in FOOL, and then Vampire can be used to prove program
safety. This requires us to encode (i) the next state value of res (and
max) as a hypothesis in the extended TFF0 syntax of FOOL, by using the

res := x;
if (x > y)

then max := x;
else max := y;

if (max > 0)
then res := res + max;
else res := res − max;

assert res ≥ x

Figure 2.1. Sequence of conditionals.
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tff(x, type, x: $int).
tff(y, type, y: $int).
tff(max, type, max: $int).
tff(res, type, res: $int).
tff(res1, type, res1: $int).

tff(transition_relation, hypothesis,
res1 = $let(res := x,

$let(max := $ite($greater(x, y),
$let(max := x, max),
$let(max := y, max)),

$let(res := $ite($greater(max, 0),
$let(res := $sum(res, max),

res),
$let(res := $diff(res, max),

res)),
res)))).

tff(safety_property, conjecture, $greatereq(res1, x)).

Figure 2.2. Representation of the partial correctness statement of the
code on Figure 2.1 in Vampire.

if-then-else ($ite) and let-in ($let) constructs, and (ii) the safety
property as the conjecture to be proven by Vampire.

Figure 2.2 shows this extended TFF0 encoding. The use of if-then-
else and let-in constructs allows us to have a direct encoding of the
transition relation of Figure 2.1 in FOOL. Note that each expression from
the program appears only once in the encoding.

We now explain how the encoding of the next state values of program
variables can be generated automatically. We consider programs using
assignments :=, if-then-else and sequential composition ;. We begin
by making an assumption about the structure of programs (which we
relax later). A program P is in restricted form if for any subprogram of
the form if e then P1 else P2 the subprograms P1 and P2 only make
assignments to the same single variable. Given a program P in restricted
form let us define its translation [P ] inductively as follows:

• [x := e] is let x = e in x;

• [if e then P1 else P2], where P1 and P2 update x, is let x =
if e then [P1] else [P2] in x;
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if (x > y)
then t := x; x := y; y := t;

assert y ≥ x

Figure 2.3. Updating multiple variables.

• [P1; P2] is let D in [P2] where [P1] is let D in x.

Given a program P , the next state value for variable x can be given by
[P ; x := x], i.e. by ensuring the final statement of the program updates
the variable of interest. The restricted form is required as conditionals
must be viewed as assignments in the translation and assignments can
only be made to single variables.

To demonstrate the limitations of this restriction let us consider the
simple program in Figure 2.3 that ensures that x is not larger than y. We
cannot apply the translation as the conditional updates three variables.
To generalise the approach we can extend FOOL with tuple expressions,
let us call this extension FOOL+. In this extended logic the next state
values for Figure 2.3 can be encoded as follows:

let (x, y, t) = if x > y then
let (x, y, t) = (x, y, x) in

let (x, y, t) = (y, y, t) in
let (x, y, t) = (x, t, t) in (x, y, t)

else (x, y, t)
in (x, y, t)

We now give a brief sketch of the extended logic FOOL+ and the associ-
ated translation. We omit details since its full definition and semantics
would require essentially repeating definitions from [53]. FOOL+ extends
FOOL by tuples; for all expressions ti of type σi we can use a tuple ex-
pression (t1, . . . , tn) of type (σ1, . . . , σn). The logic should also include a
suitable tuple projection function, which we do not discuss here.

This extension allows for a more general translation in two senses:
first, the previous restricted form is lifted; and second, it now gives
the next state values of all variables updated by the program. Given a
program P its translation [P ] will have the form let (x1, . . . , xn) = E

in (x1, . . . , xn), where x1, . . . , xn are all variables updated by P , that is,
all variables used in the left-hand-side of an assignment. We inductively
define [P ] as follows:

• [xi := e] is let (. . . , xi, . . .) = (. . . , e, . . .) in (x1, . . . , xn),
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• [if e then P1 else P2] is let (x1, . . . , xn) = if e then [P1] else [P2]
in (x1, . . . , xn),

• [P1; P2] is let D in [P2] where [P1] is let D in (x1, . . . , xn).

This translation is bounded by O(v ·n), where v is the number of variables
in the program and n is the program size (number of statements) as each
program statement is used once with one or two instances of (x1, . . . , xn).
This becomes O(n) if we assume that the number of variables is fixed. The
translation could be refined so that some introduced let-in expressions
only use a subset of program variables. Finally, this translation preserves
the semantics of the program.

Theorem 2.1. Let P be a program with variables (x1, . . . , xn) and let
u1, . . . , un, v1, . . . , vn be values (where ui and vi are of the same type as xi).
If P changes the state {x1 → u1, . . . , xn → un} to {x1 → v1, . . . , xn →
vn} then the value of [P ] in {x1 → u1, . . . , xn → un} is (v1, . . . , vn).

This translation encodes the next state values of program variables by
directly following the structure of the program. This leads to a succinct
representation that, importantly, does not lose any information or attempt
to translate the program too early. This allows the theorem prover to
apply its own translation to FOL that it can handle efficiently. While
FOOL+ is not yet fully supported in Vampire, we believe experimenting
with FOOL+ on examples coming from program analysis and verification
is an interesting task for future work.

2.4.2 A Program with a Loop and Arrays
Let us now show the use of FOOL in Vampire for reasoning about pro-
grams with loops. Consider the program given in Figure 2.4, written in a
C-like syntax. The program fills an integer-valued array B by the strictly
positive values of a source array A, and an integer-valued array C with
the non-positive values of A. A safety assertion, in FOL, is specified at the
end of the loop, using the assert construct. The program of Figure 2.4 is
clearly safe as the assertion is satisfied when the loop is exited. However,
to prove program safety we need additional loop properties, that is loop
invariants, that hold at any loop iteration. These can be automatically
generated using existing approaches, for example the symbol elimination
method for invariant generation in Vampire [56]. In this case we use the
FOL property specified in the invariant construct of Figure 2.4. This
invariant property states that at any loop iteration, (i) the sum of visited
array elements in A is the sum of visited elements in B and C (that is,
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a := 0; b := 0; c := 0;
invariant a = b + c ∧
invariant a ≥ 0 ∧ b ≥ 0 ∧ c ≥ 0 ∧ a ≤ k ∧
invariant (∀p)(0 ≤ p < b⇒ (∃i)(0 ≤ i < a ∧A[i] > 0 ∧B[p] = A[i]))

while (a ≤ k) do
if (A[a] > 0)

then B[b] := A[a]; b := b+ 1;
else C[c] := A[a]; c := c+ 1;

a := a+ 1;
end do
assert (∀p)(0 ≤ p < b⇒ B[p] > 0)

Figure 2.4. Array partition.

a = b+ c), (ii) the number of visited array elements in A, B, C is positive
(that is, a ≥ 0, b ≥ 0, and c ≥ 0), with a ≤ k, and (iii) each array element
B[0], . . . , B[b − 1] is a strictly positive element in A. Formulating the
latter property requires quantifier alternation in FOL, resulting in the
quantified property with ∀∃ listed in the invariant of Figure 2.4. We can
verify the safety of the program using Hoare-style reasoning in Vampire.
The partial correctness property is that the invariant and the negation
of the loop condition implies the safety assertion. This is the conjecture
to be proven by Vampire. Figure 2.5 shows the encoding in the extended
TFF0 syntax of this partial correctness statement; note that this uses the
built-in theory of polymorphic arrays in Vampire, where arrayA, arrayB
and arrayC correspond respectively to the arrays A, B and C.

So far, we assumed that the given invariant in Figure 2.4 is indeed
an invariant. Using FOOL+ described in Section 2.4.1, we can verify
the inductiveness property of the invariant, as follows: (i) express the
transition relation of the loop in FOOL+, and (ii) prove that, if the
invariant holds at an arbitrary loop iteration i, then it also holds at loop
iteration i+ 1. For proving this, we can again use FOOL+ to formulate
the next state values of loop variables in the invariant at loop iteration
i+ 1. Moreover, FOOL+ can also be used to express formulas as inputs
to the symbol elimination method for invariant generation in Vampire.
We leave the task of using FOOL+ for invariant generation as further
work.
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tff(a, type, a: $int).
tff(b, type, b: $int).
tff(c, type, c: $int).
tff(k, type, k: $int).
tff(arrayA, type, arrayA: $array($int, $int)).
tff(arrayB, type, arrayB: $array($int, $int)).
tff(arrayC, type, arrayC: $array($int, $int)).

tff(invariant_property, hypothesis, inv <=>
((a = $sum(b, c)) &
$greatereq(a, 0) & $greatereq(b, 0) &
$greatereq(c, 0) & $lesseq(a, k) &
![P: $int]: ($lesseq(0, P) & $less(P, b) =>
(?[I: $int]: ($lesseq(0, I) & $less(I, a) &

$greater($select(arrayA, I), 0) &
$select(arrayB, P) = $select(arrayA, I)))))).

tff(safety_property, conjecture,
(inv & ∼$lesseq(a, k)) =>
(![P: $int]: ($lesseq(0, P) & $less(P, b) =>

$greater($select(arrayB, P), 0)))).

Figure 2.5. Representation of the partial correctness statement of the
code on Figure 2.4 in Vampire.

2.5 Experimental Results
The extension of Vampire to support FOOL and the polymorphic theory of
arrays comprises about 3,100 lines of C++ code, of which the translation
of FOOL to FOL and FOOL paramodulation takes about 2,000 lines,
changes in the parser about 500 lines and the implementation of the
polymorphic theory of arrays about 600 lines. Our implementation is
available at www.cse.chalmers.se/~evgenyk/fool-experiments/ and
will be included in the forthcoming official release of Vampire.

In the sequel, by Vampire we mean its version including support for
FOOL and the polymorphic theory of arrays. We write Vampire ? for its
version with FOOL paramodulation turned off.

In this section we present experimental results obtained by running
Vampire on FOOL problems. Unfortunately, no large collections of such
problems are available, because FOOL was not so far supported by any
first-order theorem prover. What we did was to extract such benchmarks
from other collections.
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1. We noted that many problems in the higher-order part of the TPTP
library [83] are FOOL problems, containing no real higher-order
features. We converted them to FOOL problems.

2. We used a collection of first-order problems about (co)algebraic
datatypes, generated by the Isabelle theorem prover [67], see Sub-
section 2.5.2 for more details.

Our results are summarised in Tables 2.1–2.3 and discussed below. These
results were obtained on a MacBook Pro with a 2,9 GHz Intel Core i5 and
8 Gb RAM, and using the time limit of 60 seconds per problem. Both
the benchmarks and the results are available at www.cse.chalmers.se/
~evgenyk/fool-experiments/.

2.5.1 Experiments with TPTP Problems
The higher-order part of the TPTP library contains 3036 problems. Among
these problems, 134 contain either Boolean arguments in function appli-
cations or quantification over Booleans, but contain no lambda abstrac-
tion, higher-order sorts or higher-order equality. We used these 134
problems, since they belong to FOOL but not to FOL. We translated
these problems from THF0 to the modification of TFF0, supported by
Vampire using the following syntactic transformation: (a) every occur-
rence of the keyword thf was replaced by tff ; (b) every occurrence
of a sort definition of the form s_1 > ... > s_n > s was replaced by
s_1 * ... * s_n > s ; (c) every occurrence of a function application of
the form f @ t_1 @ ... @ t_n was replaced by f(t_1, ..., t_n) .

Out of 134 problems, 123 were marked as Theorem and 5 as Un-
satisfiable, 5 as CounterSatisfiable, and 1 as Satisfiable, using the SZS
status of TPTP. Essentially, this means that among their satisfiability-
checking analogues, 128 are unsatisfiable and 6 are satisfiable. Vampire
was run with the --mode casc option for unsatisfiable (Theorem and
Unsatisfiable) problems and with --mode casc_sat for satisfiable (Coun-
terSatisfiable and Satisfiable) problems. These options correspond to the
CASC competition modes of Vampire for respectively proving validity
(i.e. unsatisfiability) and satisfiability of an input problem.

For this experiment, we compared the performance of Vampire with
those of the higher-order theorem provers used in the latest edition of
CASC [86]: Satallax [21], Leo-II [14], and Isabelle [67]. We note that all
of them used the first-order theorem prover E [79] for first-order reasoning
(Isabelle also used several other provers).
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Table 2.1. Runtimes in seconds of provers on the set of 134 higher-order
TPTP problems.

Prover Solved Total time on solved problems
Vampire 134 3.59
Vampire ? 134 7.28
Satallax 134 23.93
Leo-II 127 27.42
Isabelle 128 893.80

Table 2.1 summarises our results on these problems. Only Vampire,
Vampire ? and Satallax were able to solve all of them, while Vampire was
the fastest among all provers. We believe these results are significant
for two reasons. First, for solving these problems previously one needed
higher-order theorem provers, but now can they be proven using first-
order reasoners. Moreover, even on such simple problems there is a clear
gain from using FOOL paramodulation.

2.5.2 Experiments with
Algebraic Datatypes Problems

For this experiment, we used 152 problems generated by the Isabelle the-
orem prover. These problems express various properties of (co)algebraic
datatypes and are written in the SMT-LIB 2 syntax [10]. All 152 problems
contain quantification over Booleans, Boolean arguments in function/pred-
icate applications and if-then-else expressions. These examples were
generated and given to us by Jasmin Blanchette, following the recent work
on reasoning about (co)datatypes [73]. To run the benchmark we first
translated the SMT-LIB files to the TPTP syntax using the SMTtoTPTP
translator [12] version 0.9.2. Let us note that this version of SMTtoTPTP
does not fully support the Boolean type in SMT-LIB. However, by setting
the option --keepBool in SMTtoTPTP, we managed to translate these
152 problems into an extension of TFF0, which Vampire can read. We
also modified the source code of SMTtoTPTP so that if-then-else ex-
pressions in the SMT-LIB files are not expanded but translated to $ite
in FOOL. A similar modification would have been needed for translating
let-in expressions; however, none of our 152 examples used let-in.

After translating these 152 problems into an extended TFF0 syntax
supporting FOOL, we ran Vampire twice on each benchmark: once using
the option --mode casc, and once using --mode casc_sat. For each
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Table 2.2. Runtimes in seconds of provers on the set of 152 algebraic
datatypes problems.

Prover Solved Total time on solved problems
Vampire 59 26.580
Z3 57 4.291
Vampire ? 56 26.095
CVC4 53 25.480
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Figure 2.6. Venn diagram of the subsets of the algebraic datatypes prob-
lems, solved by Vampire, CVC4 and Z3.

problem, we recorded the fastest successful run of Vampire. We used
a similar setting for evaluating Vampire ?. In this experiment, we then
compared Vampire with the best available SMT solvers, namely with
CVC4 [8] and Z3 [27].

Table 2.2 summarises the results of our experiments on these 152 prob-
lems. Vampire solved the largest number of problems, and all problems
solved by Vampire ? were also solved by Vampire. Figure 2.6 shows the
Venn diagram of the sets of problems solved by Vampire, CVC4 and Z3,
where the numbers denote the numbers of solved problems. All prob-
lems apart from 11 were either solved by all systems or not solved by all
systems. Table 2.3 details performance results on these 11 problems.

Based on our experimental results shown in Tables 2.2 and 2.3, we
make the following observations. On the given set of problems the im-
plementation of FOOL reasoning in Vampire was efficient enough to
compete with state-of-the-art SMT solvers. This is significant because
the problems were tailored for SMT reasoning. Vampire not only solved
the largest number of problems, but also yielded runtime results that are
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Table 2.3. Runtimes in seconds of provers on selected algebraic datatypes
problems. Dashes mean the solver failed to find a solution.

Problem Vampire CVC4 Z3
afp/abstract_completeness/1830522 — — 0.172
afp/bindag/2193162 — — 0.388
afp/coinductive_stream/2123602 — 0.373 0.101
afp/coinductive_stream/2418361 3.392 — —
afp/huffman/1811490 0.023 — —
afp/huffman/1894268 0.025 — 0.052
distro/gram_lang/3158791 0.047 0.179 —
distro/koenig/1759255 0.070 — —
distro/rbt_impl/1721121 4.523 — —
distro/rbt_impl/2522528 0.853 — 0.064
gandl/bird_bnf/1920088 0.037 — 0.077

comparable with those of CVC4. Whenever successful, Z3 turned out to
be faster than Vampire; we believe this is because of the sophisticated
preprocessing steps in Z3. Improving FOOL preprocessing in Vampire,
for example for more efficient CNF translation of FOOL formulas, is an
interesting task for further research. We note that the usage of FOOL
paramodulation showed improvement.

2.6 Related Work
FOOL was introduced in our previous work [53]. This also presented
a translation from FOOL to the ordinary first-order logic, and FOOL
paramodulation. In this paper we describe the first practical implemen-
tation of FOOL and FOOL paramodulation.

Superposition theorem proving in finite domains, such as the Boolean
domain, is also discussed in [38]. The approach of [38] sometimes falls
back to enumerating instances of a clause by instantiating finite domain
variables with all elements of the corresponding domains. Nevertheless,
it allows one to also handle finite domains with more than two elements.
One can also generalise our approach to arbitrary finite domains by using
binary encodings of finite domains. However, this will necessarily result
in loss of efficiency, since a single variable over a domain with 2k elements
will become k variables in our approach, and similarly for function argu-
ments. Although [38] reports preliminary results with the theorem prover
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SPASS, we could not make an experimental comparison since the SPASS
implementation has not yet been made public.

Handling Boolean terms as formulas is common in the SMT commu-
nity. The SMT-LIB project [10] defines its core logic as first-order logic
extended with the distinguished first-class Boolean sort and the let-in
expression used for local bindings of variables. The language of FOOL
extends the SMT-LIB core language with local function definitions, using
let-in expressions defining functions of arbitrary, and not just zero, arity.

A recent work [12] presents SMTtoTPTP, a translator from SMT-LIB
to TPTP. SMTtoTPTP does not fully support Boolean sort, however one
can use SMTtoTPTP with the --keepBool option to translate SMT-LIB
problems to the extended TFF0 syntax, supported by Vampire.

Our implementation of the polymorphic theory of arrays uses a syntax
that coincides with the TPTP’s own syntax for polymorphically typed
first-order logic TFF1 [18].

2.7 Conclusion and Future Work
We presented new features recently implemented in Vampire. They in-
clude FOOL: the extension of first-order logic by a first-class Boolean sort,
if-then-else and let-in expressions, and polymorphic arrays. Vampire
implements FOOL by translating FOOL formulas into FOL formulas.
We described how this translation is done for each of the new features.
Furthermore, we described a modification of the superposition calculus
by FOOL paramodulation that makes Vampire reasoning in FOOL more
efficient. We also gave a simple extension to FOOL that allows one to
express the next state relation of a program as a Boolean formula which
is linear in the size of the program.

Neither FOOL nor polymorphic arrays can be expressed in TFF0. In
order to support them Vampire uses a modification of the TFF0 syntax
with the following features:

1. the Boolean sort $o can be used as the sort of arguments and
quantifiers;

2. Boolean variables can be used as formulas, and formulas can be
used as Boolean arguments;

3. if-then-else expressions are represented using a single keyword
$ite rather than two different keywords $ite_t and $ite_f ;
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4. let-in expressions are represented using a single keyword $let
rather than four different keywords $let_tt , $let_tf , $let_ft
and $let_ff ;

5. $array , $select and $store are used to represent arrays of
arbitrary types.

Our experimental results have shown that our implementation, and
especially FOOL paramodulation, are efficient and can be used to solve
hard problems.

Many program analysis problems, problems used in the SMT com-
munity, and problems generated by interactive provers, which previously
required (sometimes complex) ad hoc translations to first-order logic,
can now be understood by Vampire without any translation. Further-
more, Vampire can be used to translate them to the standard TPTP
without if-then-else and let-in expressions, that is, the format under-
stood by essentially all modern first-order theorem provers and used at
recent CASC competitions. One should simply use –mode preprocess
and Vampire will output the translated problem to stdout in the TPTP
syntax.

The translation to FOL described here is only the first step to the
efficient handling of FOOL. It can be considerably improved. For example,
the translation of let-in expressions always introduces a fresh function
symbol together with a definition for it, whereas in some cases inlining
the function would produce smaller clauses. Development of a better
translation of FOOL is an important future work.

FOOL can be regarded as the smallest superset of the SMT-LIB 2 Core
language and TFF0. A native implementation of an SMT-LIB parser in
Vampire is an interesting future work. Note that such an implementation
can also be used to translate SMT-LIB to FOOL or to FOL.

Another interesting future work is extending FOOL to handle polymor-
phism and implementing it in Vampire. This would allow us to parse and
prove problems expressed in the TFF1 [18] syntax. Note that the current
usage of $array conforms with the TFF1 syntax for type constructors.
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Chapter 3

A Clausal Normal Form
Translation for FOOL

Evgenii Kotelnikov, Laura Kovács,
Martin Suda and Andrei Voronkov

Abstract. Automated theorem provers for first-order logic usually op-
erate on sets of first-order clauses. It is well-known that the translation
of a formula in full first-order logic to a clausal normal form (CNF) can
crucially affect performance of a theorem prover. In our recent work we
introduced a modification of first-order logic extended by the first class
Boolean sort and syntactical constructs that mirror features of program-
ming languages. We called this logic FOOL. Formulas in FOOL can
be translated to ordinary first-order formulas and checked by first-order
theorem provers. While this translation is straightforward, it does not
result in a CNF that can be efficiently handled by state-of-the-art theorem
provers which use superposition calculus. In this paper we present a new
CNF translation algorithm for FOOL that is friendly and efficient for
superposition-based first-order provers. We implemented the algorithm
in the Vampire theorem prover and evaluated it on a large number of
problems coming from formalisation of mathematics and program anal-
ysis. Our experimental results show an increase of performance of the
prover with our CNF translation compared to the naive translation.

Published in the Proceedings of the 2nd Global Conference on Artificial
Intelligence, pages 53–71. EPiC Series in Computing, 2016.
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3.1 Introduction
Automated theorem provers for first-order logic usually operate on sets
of first-order clauses. In order to check a formula in full first-order logic,
theorem provers first translate it to clausal normal form (CNF). It is
well-known that the quality of this translation affects the performance
of the theorem prover. While there is no absolute criterion of what
the best CNF for a formula is, theorem provers usually try to make
the CNF smaller according to some measure. This measure can include
the number of clauses, the number of literals, the lengths of the clauses
and the size of the resulting signature, i.e. the number of function and
predicate symbols. Implementors of CNF translations commonly employ
formula simplification [68], (generalised) formula naming [68, 2], and other
clausification techniques, aimed to make the CNF smaller.

Our recent work [53] presented a modification of many-sorted first-
order logic with first-class Boolean sort. We called this logic FOOL,
standing for first-order logic (FOL) with Boolean sort. FOOL extends
standard FOL by (i) treating Boolean terms as formulas, (ii) if-then-else
expressions, (iii) let-in expressions, and (iv) tuple expressions. While
if-then-else and let-in expressions are also available in the SMT-LIB
core language [9], the standard input language for SMT solvers, FOOL is
a strict superset of SMT-LIB as tuple expressions are not part of SMT-
LIB and let-in expressions in FOOL can define non-constant functions
and predicate symbols.

There is a model-preserving translation of FOOL formulas to FOL (see
[53]) that works by replacing parts of a FOOL formula with applications of
fresh function and predicate symbols and extending the set of assumptions
with definitions of these symbols. To reason about a FOOL formula,
one can thus first translate it to a FOL formula and then convert the
FOL formula into a set of clauses using the usual first-order clausification
techniques. While this translation provides an easy way to support FOOL
in existing first-order provers, it is not necessarily efficient. A more
efficient translation can convert a FOOL formula directly to a set of first-
order clauses, skipping the intermediate step of converting FOOL to FOL.
This way, the translation can integrate known clausification techniques
and improve the quality of the resulting clausal normal form.

In this paper we present a new clausification algorithm VCNFFOOL
that translates a FOOL formula to an equisatisfiable set of first-order
clauses. Our algorithm avoids producing large numbers of duplicate
clauses and new symbols during clausification and also avoids clauses
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that can make theorem provers inefficient. We show that in practice this
leads to a significant increase in the performance of a theorem prover).

Our VCNFFOOL algorithm is a non-trivial extension of the recent
VCNF clausification algorithm for FOL [70]. The extension employs sev-
eral clausification techniques for handling the features of FOOL, namely
Boolean terms and if-then-else, let-in and tuple expressions. These
techniques comprise the contributions of this work and are listed below.

Contributions. The main contributions of this paper are the following.

1. We present a new clausification algorithm for translating FOOL
formulas to an equisatisfiable set of first-order clauses.

2. We handle Boolean variables in FOOL formulas by skolemising them
using Skolem predicates instead of Skolem functions, thus avoiding
the introduction of new Boolean equalities.

3. We control the clausification of FOOL formulas with if-then-else
and let-in expressions by a threshold level on the number of for-
mula occurrences. Depending on the threshold, our algorithms
decides on the fly whether to inline if-then-else and let-in ex-
pressions or introduce a new name and definition for them.

4. We handle tuple expressions in FOOL by introducing so-called pro-
jection functions and use these projection functions in the transla-
tion of let-in expressions with tuple definition.

5. We implemented our work in the Vampire theorem prover [57],
offering this way an automated support to reason about FOOL
formulas.

6. We evaluate our work on three benchmark suites coming from
verification and analysis of software and described in Section 3.4,
and show experimentally that our method significantly improves
over [51] by the number of solved problems and the runtime.

3.2 Clausal Normal Form for First-Order Logic
Traditional approaches to clausification in FOL [68, 57] produce a clausal
normal form in several stages, where each stage represents a single pass
through the formula tree. These stages may include formula simplification,
translation into (equivalence) negation normal form, formula naming,
elimination of equivalences, skolemisation, and distribution of disjunctions
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over conjunctions. The VCNF clausification algorithm of [70] takes a
different approach and employs a single top-down traversal of the formula
in which these stages are combined. This enables optimisations that are
not available if the stages of clausification are independent. For example,
compared to the traditional staged approach, VCNF can introduce fewer
Skolem functions on formulas with complex nesting of equivalences and
quantifiers. Moreover, it can detect and discard intermediate tautologies,
which are much more difficult to recognise by the staged approach.

In this paper we use the VCNF algorithm and extended it to a new
clausification algorithm for FOOL [53]. The main advantage of VCNF
for our work, however, is that its top-down traversal provides a suitable
context not only for clausification of first-order formulas, but also of the
extension of first-order logic with FOOL features. In this section we
overview the main features of VCNF. We will follow the notation used
in [70] and in what follows will repeat some of the definitions.

3.2.1 Preliminaries
Our setting is that of many-sorted first-order predicate logic with equality.

A signature Σ is a set of predicate and function symbols together with
associated sorts. A term of the sort τ is of the form f(t1, . . . , tn), c or
x where f is a function symbol of the sort τ1 × . . . × τn → τ , t1, . . . , tn
are terms of sorts τ1, . . . , τn, respectively, c is a constant of sort τ and x
is a variable of sort τ . An atom is of the form p(t1, . . . , tn), q or t1

.= t2
where p is a predicate symbol of the sort τ1× . . .× τn, t1, . . . , tn are terms
of sorts τ1, . . . , τn, respectively, q is a predicate symbol of sort bool and
.= is the equality symbol. A literal is an atom or its negation.

A formula is of the form ϕ1∧. . .∧ϕn, ϕ1∨. . .∨ϕn, ϕ1 ⇒ ϕ2, ϕ1 ⇔ ϕ2,
ϕ1 6⇔ ϕ2, ¬ϕ1, ∃x : τ.ϕ1, ∀x : τ.ϕ1, ⊥, >, or l where ϕi are formulas, x
is a variable, τ a sort and l is a literal. Note that we treat conjunction
and disjunction as n-ary operators; we assume that formulas are kept in
flattened form, e.g. (ϕ1 ∧ ϕ2) ∧ ϕ3 is always represented as ϕ1 ∧ ϕ2 ∧ ϕ3.
Furthermore, we assume that usage of > and ⊥ is simplified immediately.

A sign is a either t or f. A signed formula is a pair consisting of a
formula ϕ and a sign ? ∈ {t, f}, denoted by ϕ?. The signed formula ϕt

(resp. ϕf) means that ϕ is true (resp. false). We will use the mapping
form from signed formulas to formulas defined as follows: form(ϕt) = ϕ

and form(ϕf) = ¬ϕ. We call a sequent a finite set of signed formulas. We
say that a sequent S1, . . . , Sn is true in a FOOL interpretation if so is the
universal closure of the formula form(S1) ∨ . . . ∨ form(Sn). Note that if
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S1, . . . , Sn are signed atomic FOL formulas, then form(S1)∨. . .∨form(Sn)
is a clause.

3.2.2 VCNF
The VCNF algorithm [70] works with finite sets of sequents. During
computation the algorithm may construct substitutions to be applied
to existing (signed) formulas. It is convenient for us to collect these
substitutions without immediately applying them. For this reason, instead
of a sequent Dθ, where θ is a substitution, we will use pairs Dθ consisting
of a sequent D and a substitution θ. We will (slightly informally) also
refer to such pairs as sequents.

The VCNF algorithm starts with the input first-order formula ϕ and
a set C of sequents that contains a single sequent {ϕt}ε, where ε is the
empty substitution. Then it makes a series of steps replacing sequents in
C by other sequents until all sequents in C contain only signed atomic
FOL formulas. Some of the steps introduce fresh (previously unused)
symbols. Each update of C preserves the following invariants: (1) if
an interpretation I satisfies all sequents after the update, then I also
satisfies all sequents before the update; (2) if an interpretation I satisfies
all sequents before the update, then there exists an interpretation I ′ that
extends I on fresh symbols such that I ′ satisfies all sequents after the
update.

The replacements of sequents are guided by the structure of ϕ. VCNF
traverses ϕ top-down, processing every non-atomic subformula of ϕ ex-
actly once in an order that respects the subformula relation. That is, for
each two distinct subformulas ψ1 and ψ2 of ϕ such that ψ1 is a subfor-
mula of ψ2, ψ2 is processed before ψ1. For every subformula of ϕ, VCNF
maintains a list of its occurrences as signed formulas in the sequents of C .
The occurrences are updated whenever sequents are removed from and
added to C . The main role of the list is to allow for a fast enumeration
and lookup of all the occurrences when a particular subformula is to be
processed. As explained below, the number of occurrences is also used to
decided whether a subformula should be named. The replacements are
governed by a set of rules that are, essentially, the standard tableau rules
for first-order logic. We briefly summarise these rules below, and refer to
[70] for details.

We note that except for the rule for negation, which essentially flips
the sign of each occurrence of ψ = ¬γ and replaces ψ with its immediate
sub-formula γ in all the sequents, the remaining rules come in pairs in
which they are dual to each other. For instance, dealing with a disjunction
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γ1 ∨ γ2 with a positive ? = t is analogous to dealing with a conjunction
with a negative sign. For simplicity, we only show the versions for ? = t
below.

Let ψ be a subformula of ϕ and Dθ be a sequent such that D has an
occurrence of ψt. Before proceeding to the next subformula, VCNF visits
and replaces all such sequents D. Depending on the top-level connective
of ψ the algorithm applies the following rules.

• Suppose that ψ is of the form ¬γ. Add a sequent to C obtained
from D by replacing the occurrence of ψt with γf.

• Suppose that ψ is of the form γ1∨γ2. Add a sequent to C obtained
from D by replacing the occurrence of ψt with γ1

t, γ2
t.

• Suppose that ψ is of the form γ1 ∧ γ2. Add two sequents to C
obtained from D by replacing the occurrence of ψt with γ1

t and
γ2

t, respectively.

• Suppose that ψ in of the form γ1 ⇔ γ2. Add two sequents to C
obtained from D by replacing the occurrence of ψt with γ1

t, γ2
f

and γ1
f, γ2

t, respectively.

• Suppose that ψ in of the form γ1 6⇔ γ2. Add two sequents to C
obtained from D by replacing the occurrence of ψt with γ1

t, γ2
t

and γ1
f, γ2

f, respectively.

• Suppose that ψ is of the form (∀x : τ)γ. Add a sequent obtained
from D by replacing the occurrence of ψt with γt.

• Suppose that ψ is of the form (∃x : τ)γ. Let y1, . . . , yn be all
free variables of ψθ and τ1, . . . , τn be their sorts. Introduce a fresh
Skolem function symbol sk of the sort τ1 × . . . × τn → τ . Add
a sequent D′θ′ , where D′ is obtained from D by replacing the
occurrence of ψt with γt, and θ′ extends θ with x 7→ sk(y1, . . . , yn).

When all subformulas of ϕ are traversed and the respective rules of re-
placing sequents are applied, the set C only contains sequents with signed
atomic formulas. C is then converted to a set of first-order clauses by
applying the substitution of each sequent to its respective formulas.

Whenever the number of occurrences of a subformula ψ in sequents
in C exceeds a pre-specified naming threshold, ψ is named as follows. Let
y1, . . . , yn be free variables of ψ and τ1, . . . , τn be their sorts. VCNF
introduces a new predicate symbol P of the sort τ1× . . .× τn. Then, each
occurrence ψ? in sequents in C is replaced by P (y1, . . . , yn)?. Finally,
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two sequents {P (y1, . . . , yn)f
, ψt}ε and {P (y1, . . . , yn)t

, ψf}ε are added
to C to serve as a definition of ψ. As usual, in case ψ always occurs in C
only under a single sign, adding only the one respective defining sequent
is sufficient.

Whenever a new sequent Dθ is constructed, VCNF eliminates imme-
diate tautologies and redundant formulas. It means that

1. if D contains both ψt and ψf, Dθ is not added to C ;

2. if D contains multiple occurrences of a signed formula, only one
occurrence is kept in D;

3. if D contains >t or ⊥f, Dθ is not added to C ;

4. if D contains a signed formula ⊥t or >f, this signed formula is
removed from D.

These rules are not required for replacing sequents, however they simplify
formulas and make the resulting set of clauses smaller.

VCNF takes as an input a first-order formula in equivalence negation
normal form (ENNF). A formula is in ENNF if it does not contain ⇒
and negations are only applied to atoms. ENNF is very convenient for
standard FOL, as it reduces the number of cases to consider and makes
checking polarities trivial. At the same time, it is not easy to define a
useful extension of ENNF for FOOL because of let-in expressions and
formulas inside terms. It is straightforward, however, to extend VCNF
in order to support formulas in full first-order logic. For that, we need
to add an extra rewriting rule for implications. In what follows we will
consider a modification of VCNF with this extension.

3.3 Clausal Normal Form for FOOL
In this section we describe our new clausification algorithm for FOOL. The
algorithm takes a FOOL formula as input and produces an equisatisfiable
set of first-order clauses. We write VCNFFOOL to refer to this algorithm,
and FOOL2FOL to refer to the algorithm of [53] for translating FOOL
formulas to arbitrary FOL formulas. In what follows, we first briefly
overview the FOOL logic and then describe VCNFFOOL and compare the
CNFs produces by it and FOOL2FOL.

3.3.1 FOOL
FOOL [53] extends the standard many-sorted FOL with an interpreted
Boolean sort. Boolean variables can be used as formulas in FOOL and

73



formulas may be used as arguments to function and predicate symbols.
In addition to its first-class Boolean sort, FOOL extends standard FOL
with following constructs:

1. if-then-else expressions that can occur as terms and formulas;

2. let-in expressions that can occur as terms and formulas and can
define an arbitrary number of function and predicate symbols.

Finally, FOOL also includes tuple expressions and let-in expressions
with tuple definitions. A let-in expression with a tuple definition has
the form let (c1, . . . , cn) = s in t, where n > 1, t is a term, c1, . . . , cn are
constants, and s is a tuple expression. A tuple expression is inductively
defined as follows:

1. (s1, . . . , sn), where s1, . . . , sn are terms;

2. if ϕ then s1 else s2, where s1 and s2 are tuple expressions;

3. a let-in expression of the form let D in t, where D is tuple,
function, or predicate definition, and t is a tuple expression.

Note that tuple expressions are not first class terms. They can only
occur on the right-hand side of tuple definitions, but not as arguments
to function or predicate symbols. Moreover, we do not assign sorts to
tuple expressions and do not allow nested tuple expressions. It is however
straightforward to extend FOOL with a theory of first class tuples. For
that, one needs to assign tuple sorts of the form (τ1, . . . , τn) to tuple
expressions of the form (s1, . . . , sn) if s1 : τ1, . . . , sn : τn, and allow tuple
expression to appear as terms. Such extension is not considered in this
paper.

There are several ways to support the interpreted Boolean sort in first-
order theorem proving. The approach taken in [53] proposes to axiomatise
it by adding two constants true and false of this sorts and two axioms:
true 6 .= false and (∀x : bool)(x .= true ∨ x .= false). Furthermore, [53]
proposes a modification in superposition calculus of first-order provers: it
(i) changes the simplification ordering of first-order prover by making true
and false the smallest terms of Boolean sort and (ii) replaces the second
axiom with a so-called FOOL paramodulation rule. These modifications
block self-paramodulation of x .= true ∨ x .= false and hence prevent
performance problems arising from self-paramodulation in superposition
theorem proving. In this paper, we however argue that neither Boolean
axiom nor modifications of superposition calculus are needed to support
the interpreted Boolean sort. Rather, we propose special processing of
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Boolean variables and Boolean equalities during clausification and avoid
the introduction of new Boolean equalities.

3.3.2 Introducing VCNFFOOL

The VCNFFOOL clausification algorithm introduced in this paper is a
non-trivial extension of the VCNF algorithm. Compared to FOOL2FOL,
VCNFFOOL clausifies FOOL formulas directly, without first translating
them to general FOL formulas and only then to CNF. The VCNFFOOL
algorithm extends VCNF by adding support for FOOL formulas, as
follows.

• We allow sequents to contain signed FOOL formulas, and not just
first-order formulas.

• We extend the VCNF tautology elimination with the support for
Boolean variables. Whenever a Boolean variable occurs in a se-
quent twice with the opposite signs, that sequent is not added to
C . Whenever a Boolean variable occurs in a sequent multiple times
with the same sign, only one occurrence is kept in the sequent.

• We add extra rules that guide how sequents are replaced in the set
C detailed below. These rules correspond to syntactical constructs
available in FOOL but not in ordinary first-order logic.

• We change the rule that translates existentially quantified formulas
to skolemise Boolean variables using Skolem predicates and not
Skolem functions. For that, we also allow substitutions to map
Boolean variables to Skolem literals.

• We add an extra step of translation. After the input formula has
been traversed, we apply substitutions of Boolean variables to every
formula in each respective sequent. The resulting set of sequents
might have Skolem literals occurring as terms. We run the clausifi-
cation algorithm again on this set of sequents. The second run does
not introduce new substitutions and results with a set of sequents
that only contain atomic formulas and substitutions of non-Boolean
variables.

In the sequel, we detail the rules of VCNFFOOL for replacing sequents.
To simplify the exposition and without the loss of generality, we make
the following assumptions about the input FOOL formula.
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• We do not distinguish formulas used as arguments as a separate
syntactical construct, but rather treat each such formula ϕ as an
if-then-else expression of the form if ϕ then true else false.

• We assume that every let-in expression defines exactly one function
or predicate symbol. Every let-in expression that defines more
than one symbol can be transformed to multiple nested let-in
expressions, each defining a single symbol, possibly by renaming
some of the symbols.

• We assume that let-in expressions only occur as formulas. Every
atomic formula that contains a let-in expression can be trans-
formed to a let-in expression that defines the same symbol and
occurs as a formula.

• Finally, we assume that each function or predicate symbol is defined
by a let-in expression at most once. This can be achieved by a
standard renaming policy.

3.3.3 VCNFFOOL Rules
This section presents the rewriting rules of VCNFFOOL for syntactic
construct available in FOOL, but not in standard first-order logic. For
each such construct we present a rewriting rule for it in VCNFFOOL, give
an example of a FOOL formula with that construct, and compare its
CNFs obtained using VCNFFOOL and FOOL2FOL.

Let us now fix an input formula ϕ and let ψ be one of its subformulas.
In the sequel we assume that ϕ and ψ are fixed and give all definitions
relative to them. Let Dθ be a sequent such that D has an occurrence of
ψ?.

Boolean Variables
Suppose that ψ is a Boolean variable x. If θ does map x, VCNFFOOL adds
Dθ to C . This corresponds to the case in which x was an existentially
quantified variable skolemised in some previous step.

If θ does not map x, VCNFFOOL adds the sequent D′θ′ to C , where
D′ is obtained from D by removing the occurrence of ψ? and θ′ extends
θ with x 7→ false if ? = t, and x 7→ true if ? = f. This corresponds to
the case in which x was a universally quantified variable. Treating the
Boolean universal quantifier as a conjunction, we are implicitly replacing
the sequent D with two extensions, one for x 7→ false and the other for
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x 7→ true. However, one of them is always true due to the occurrence
of ψ? in D and so is not considered anymore. Thus only D′θ′ is further
processed by VCNFFOOL.

Example. Let ψ1 = (∀x : bool)(x ∨ P (x)), ψ2 = (∃y : bool)(P (y) ∧ y),
where P is a predicate symbol of the sort bool → bool and let us consider
the formula ϕ = ψ1 ∨ ψ2.

To process ϕ, VCNFFOOL first applies the rule for disjunction inher-
ited from VCNF, obtaining the sequent {ψt

1, ψ
t
2}ε. The following are the

steps corresponding to processing ψ1 and its subformulas:

{(∀x : bool)(x ∨ P (x))t, ψt
2}ε ⇒

{(x ∨ P (x))t, ψt
2}ε ⇒

{xt, P (x)t, ψt
2}ε ⇒

{xt, P (x)t, ψt
2}{x 7→false}.

Notice how the substitution is extended by x 7→ false because of the
positive occurrence of the Boolean variable x.

Next, we show how ψ2 and its subformulas get processed. We intro-
duce sk, a nullary Skolem predicate symbol for the existential quantifier:

{xt, P (x)t, (∃y : bool)(P (y) ∧ y)t}{x7→false} ⇒
{xt, P (x)t, (P (y) ∧ y)t}{x 7→false,y 7→sk} ⇒
{xt, P (x)t, P (y)t}{x 7→false,y 7→sk}, {xt, P (x)t, yt}{x 7→false,y 7→sk}.

Recall that dealing with Boolean variables in VCNFFOOL requires an
extra stage in which Boolean substitutions are applied:

{falset, P (false)t, P (sk)t}ε, {falset, P (false)t, skt}ε.

Next, VCNFFOOL eliminates the tautology falset in both sequents. The
literal P (sk) contains a formula inside, therefore VCNFFOOL translates
it as the formula P (if sk then true else false) according to the rules
given in Section 3.3.3:

{P (false)t, P (if sk then true else false)t}ε, {P (false)t, skt}ε.

Finally, VCNFFOOL converts signed atomic formulas to literals and we
obtain the following three clauses:1

{P (false),¬sk, P (true)}, {P (false), sk}, {P (false), sk}.
1Notice that the last two clauses are identical and one of them could be dropped.

However, VCNFFOOL is not designed to do that.
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FOOL2FOL converts ϕ to the following set of clauses:

{x .= true, P (x), P (sk)}, {x .= true, P (x), sk .= true},

where sk is a Skolem constant of the sort bool.

The FOOL2FOL algorithm of [53] replaces each Boolean variable x
occurring as formula with x .= true and skolemises Boolean variables using
Boolean Skolem functions. Unlike FOOL2FOL, VCNFFOOL skolemises
Boolean variables using Skolem predicates and substitutes Boolean vari-
ables that do not need skolemisation with constants true and false. The
approach taken in VCNFFOOL is superior in two regards.

1. FOOL2FOL converts each skolemised Boolean variable x occur-
ring as formula to an equality between Skolem terms and true.
VCNFFOOL converts x to a Skolem literal which can be handled by
standard superposition more efficiently.

2. Substitution of a universally quantified Boolean variable with true
and false can decrease the size of the translation. If the Boolean
variable occurs as formula, after applying the substitution, the oc-
currence is either removed or the whole sequent is discarded by
tautology elimination in VCNFFOOL.

Our treatment of Boolean variables never introduces new equalities
and uses Skolem predicates instead of Skolem functions. We process
Boolean equalities as logical equivalences and use guards to name if-
then-else expressions occurring as terms. The usage of these techniques
give the resulting set of clauses the following two properties.

1. It can only contain Boolean variables and constants true and false
as Boolean terms.
Every Boolean term that occurs in ϕ is translated as formula and no
Boolean terms other than variables, true and false are introduced.

2. It does not contain equalities between Boolean terms.
Every Boolean equality occurring in the input is translated as equiv-
alence between its arguments, and no new Boolean equalities are
eventually introduced.

These two properties ensure that no extra axioms or inference rules are
required to handle the interpreted Boolean sort in a theorem prover. In
particular, thanks to the second property we do not need any form of
equational reasoning for this sort.
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Boolean Equalities
Suppose that ψ is γ1

.= γ2, where γ1 and γ2 are formulas. VCNFFOOL
adds a sequent to C that is obtained from D by replacing the occurrence
of ψ? with (γ1 ⇔ γ2)?.

In effect, VCNFFOOL reduces the case of Boolean equality to that
of formula equivalence, delegating the processing to the respective rule
inherited from VCNF.

if-then-else Expressions as Terms
Suppose that ψ is an atomic formula that contains one or more if-then-
else expressions occurring as terms. VCNFFOOL translates each of the
expressions either by expanding or naming it. We first describe this step
of VCNFFOOL for a single if-then-else expression and then generalise
for an arbitrary number of if-then-else expressions inside one atomic
formula. Suppose that ψ is an atomic formula L[if γ then s else t].

Expanding. VCNFFOOL adds two sequents to C obtained from D by
replacing the occurrence of ψ? with γf, L[s]? and γt, L[t]?, respectively.

Naming. Let x1, . . . , xn be all the free variables of γ, and τ1, . . . , τn
be their sorts. Let τ be the common sort of both s and t. Then, the
VCNFFOOL algorithm

1. introduces a fresh predicate symbol P of the sort τ × τ1 × . . .× τn;

2. introduces a fresh variable y of the sort τ ;

3. adds a sequent to C that is obtained from D by replacing the
occurrence of ψ? with L[y]?, P (y, x1, . . . , xn)f;

4. adds sequents {γf, P (s, x1, . . . , xn)t}ε and {γt, P (t, x1, . . . , xn)t}ε
to C .

Example. Consider a definition of the max function using if-then-else
taken from [51]:

(∀x : Z)(∀y : Z)(max(x, y) .= if x ≥ y then x else y). (3.1)

To translate (3.1), VCNFFOOL first applies twice the rule for universal
quantifier inherited from VCNF, obtaining the sequent

{(max(x, y) .= if x ≥ y then x else y)t}ε.
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Then, either expanding or naming processes the result.

• Expanding results in

{(x ≥ y)f
, (max(x, y) .= x)t}ε, {(x ≥ y)t

, (max(x, y) .= y)f}ε.

• Naming results in

{(max(x, y) .= z)t
, P (z, x, y)f}ε,

{(x ≥ y)f
, P (x, x, y)t}ε, {(x ≥ y)t

, P (y, x, y)t}ε,

where z is a fresh variable of the sort Z and P is a fresh predicate
symbol of the sort Z×Z×Z.

Finally, VCNF converts signed formulas to literals, and we obtain

• {x 6≥ y,max(x, y) .= x}, {x ≥ y,max(x, y) 6 .= y} in case of expand-
ing;

• {max(x, y) .= z,¬P (z, x, y)}, {x 6≥ y, P (x, x, y)}, {x ≥ y, P (y, x, y)}
in case of naming.

FOOL2FOL translates (3.1) to (∀x : Z)(∀y : Z)(max(x, y) .= g(x, y)),
where g is a fresh function symbol defined by the following formulas:

1. (∀x : Z)(∀y : Z)(x ≥ y ⇒ g(x, y) .= x);

2. (∀x : Z)(∀y : Z)(x 6≥ y ⇒ g(x, y) .= y).

This translation ultimately yields the set of three clauses with two new
equalities

{max(x, y) .= g(x, y)}, {x 6≥ y, g(x, y) .= x}, {x ≥ y, g(x, y) .= y}.

Both excessive expanding and excessive naming can result in a big
CNF. Expanding if-then-else expressions in VCNFFOOL doubles the
number of sequents with occurrences of L, but does not introduce fresh
symbols. Naming, on the other hand, adds exactly two new sequents,
but introduces a fresh symbol. Both expanding and naming duplicate
the condition of the if-then-else expression. As discussed previously,
VCNFFOOL keeps track of the number of occurrences of this condition and
names it if this number exceeds the naming threshold. At the same time,
expanding constructs two new literals that cannot be named because
they might be syntactically distinct and VCNFFOOL does not count

80



occurrences of literals. If the constructed literals contain more if-then-
else expressions inside, rewriting them might cause exponential increase
of the number of sequents.

To balance between these two strategies, we introduce a parameter
to VCNFFOOL called the if-then-else expansion threshold. By default,
we heuristically set the if-then-else expansion threshold of VCNFFOOL
to log2 n, where n is the naming threshold of VCNF. The if-then-else
expansion threshold of VCNFFOOL limits the maximal number of ex-
panded if-then-else expressions inside one atomic formula. We start by
expanding all if-then-else expression and once the expansion threshold
is reached, VCNFFOOL names the remaining if-then-else expressions.

Similarly to the naming threshold inherited from VCNF, the expan-
sion threshold provides a trade-off between the increase of the number of
sequents and the number of introduced symbols. For a large number of
if-then-else expressions it avoids the exponential increase in the number
of sequents. For a small number of if-then-else expressions inside an
atomic formula it avoids growing the signature.

To compare to FOOL2FOL, we recall that FOOL2FOL replaces
each non-Boolean if-then-else expression with an application of a fresh
function symbol and adds the definition of the symbol to the set of assump-
tions. The definition is expressed as an equality. Unlike FOOL2FOL, our
new VCNFFOOL algorithm avoids introducing new equalities and uses
predicate guards for naming, thus avoiding possible self-paramodulation
triggered by equality literals.

if-then-else Expressions as Formulas
Suppose that ψ is of the form if χ then γ1 else γ2. Then, VCNFFOOL
adds two sequents to C obtained from D by replacing the occurrence of
ψ? with χf, γ1

? and χt, γ2
?, respectively.

If done unconditionally, the translation of nested if-then-else ex-
pressions could lead to an exponential increase in the number of sequents,
as the condition formula χ is being copied. However, VCNFFOOL in-
herits from VCNF the mechanism for naming subformulas with many
occurrences (as explained in the previous section) which prevents such
blowup.

Example. Consider the following property of the max function

(∀x : Z)(∀y : Z)(if max(x, y) .= x then x ≥ y else y ≥ x). (3.2)
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To process (3.2), VCNFFOOL first applies twice the rule for universal
quantifier inherited from VCNF, obtaining the sequent

{(if max(x, y) .= x then x ≥ y else y ≥ x)t}ε.

Then, VCNFFOOL applies the rule for the if-then-else expression:

{(max(x, y) .= x)f
, (x ≥ y)t}ε, {(max(x, y) .= x)t

, (x ≥ y)f}ε.

Finally, VCNFFOOL converts signed formulas to literals and obtains the
resulting set of clauses

{max(x, y) 6 .= x, x ≥ y}, {max(x, y) .= x, y 6≥ y}.

In contrast, FOOL2FOL introduces a name for the if-then-else
expression and translates (3.2) to (∀x : Z)(∀y : Z)P (x, y), where P is a
fresh predicate symbol of the sort Z×Z with the following definitions:

1. (∀x : Z)(∀y : Z)(max(x, y) .= x⇒ P (x, y)⇔ x ≥ y);

2. (∀x : Z)(∀y : Z)(max(x, y) 6 .= x⇒ P (x, y)⇔ y ≥ x).

These three formulas ultimately yield the following set of clauses:

{P (x, y)},
{max(x, y) 6 .= x,¬P (x, y), x ≥ y}, {max(x, y) 6 .= x, P (x, y), x 6≥ y},
{max(x, y) .= y,¬P (x, y), y ≥ x}, {max(x, y) .= y, P (x, y), y 6≥ x}.

let-in Expressions
Suppose that ψ is let f(x1 : τ1, . . . , xn : τn) = t in γ. The VCNFFOOL
algorithms translates ψ either by inlining or by naming, as discussed below.
The choice of inlining or naming of let-in expressions in the problem is
determined by a pre-specified Boolean parameter of the algorithm.

Inlining. VCNFFOOL adds a sequent to C that is obtained from D

by replacing the occurrence of ψ? with γ′
?. γ′ is obtained from γ by

replacing each application f(s1, . . . , sn) of an occurrence of f in γ with
t′ and renaming of binding variables. t′ is obtained from t by replacing
each free occurrence of x1, . . . , xn in t with s1, . . . , sn, respectively. We
point out that inlining predicate symbols of zero arity does not hinder
identification of tautologies thanks to tautology removal inside sequents.
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Naming. VCNFFOOL adds a sequent to C that is obtained from D by
replacing the occurrence of ψ? with γ?. Further, VCNFFOOL also adds
the sequent {f(x1, . . . , xn) .= t}ε to C .

Naming introduces a fresh function or predicate symbol and does not
multiply the number of resulting clauses. Inlining, on the other hand, does
not introduce any symbols, but can drastically increase the number of
clauses. Either of the translations might make a theorem prover inefficient.
We point out that the number of clauses and the size of the resulting
signature are not the only factors in that. For example, consider inlining
of a let-in expression that defines a non-Boolean term. It does not
introduce a fresh function symbol and does not increase the number of
clauses. However, the inlined definition might increase the size of the
term with respect to the simplification ordering. This affects the order
in which literals will be selected during superposition, and ultimately the
performance of the prover.

let-in Expressions with Tuple Definitions
Suppose that ψ is let (c1, . . . , cn) = s in γ where n > 1. Let τ1, . . . , τn
be the sorts of c1, . . . , cn, respectively. Then, the VCNFFOOL algorithm

1. introduces a fresh sort τ , a fresh function symbol t of the sort τ , a
fresh function symbol g of the sort τ1 × . . . × τn → τ , and n fresh
function symbols π1, . . . , πn (called projection functions), where for
each 1 ≤ i ≤ n, πi is of the sort τ → τi;

2. adds a sequent to C that is obtained from D by replacing every
occurrence of ψ? with (let t = s′ in γ′)?. γ′ is obtained from γ by
replacing each free occurrence of ci with πi(t) for each 1 ≤ i ≤ n. s′
is obtained from s by replacing every tuple expression (s1, . . . , sn)
with g(s1, . . . , sn);

3. adds sequents to C that axiomatise functions g, π1, . . . , πn. In par-
ticular, these state that πi(g(s1, . . . , sn)) .= si for every i = 1, . . . , n
and that t1

.= t2 ⇔
∧n
i=1 πi(t1) .= πi(t2).

Example. Consider a formula that uses a tuple let-in expression to
swap two constants x and y of the sort Z before applying a predicate P
of the sort Z×Z to them:

let (x, y) = (y, x) in P (x, y).
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To clausify this formula, VCNFFOOL firstly converts it to the formula

let t = g(y, x) in P (π1(t), π2(t)),

where t is a fresh term of the fresh sort τ , and g is a fresh function
symbol of the sort Z × Z → τ , and π1 and π2 are projection functions
with appropriate axiomatisation. Then, depending on whether inlining
or naming is enabled, VCNFFOOL result with clauses

{P (π1(g(y, x)), π2(g(y, x)))} or {P (π1(t′), π2(t′))}, {t′ .= g(y, x)}

respectively, where t′ is a fresh constant symbol of the sort τ .

FOOL2FOL, as described in [53], cannot handle let-in expression
with tuple definitions.

3.4 Experimental Results
We extended Vampire’s VCNF clausification algorithm for standard FOL
with our VCNFFOOL clausification algorithm for FOOL formulas. The
implementation of VCNFFOOL comprised about 500 lines of C++ code.
Our implementation, benchmarks and results are available at www.cse.
chalmers.se/~evgenyk/fool-cnf-experiments/.

In what follows, we report on our experimental results obtained by
running Vampire on FOOL problems. Whenever we refer to Vampire, we
mean the Vampire version extended with our new VCNFFOOL clausifica-
tion algorithm for FOOL. We will write Vampire ? for the previous version
of Vampire with the FOOL2FOL algorithm of [51]; Vampire ? translates
FOOL formulas to FOL (after which they are clausified in a standard way)
and uses a special inference rule to avoid FOOL self-paramodulation.

For our experiments, we used three sets of benchmarks: (i) prob-
lems taken from [73] on reasoning about (co)algebraic datatypes (see
Sect. 3.4.1), (ii) examples with both quantifiers and uninterpreted func-
tions taken from the SMT-LIB library [10] (see Sect. 3.4.2), and (iii)
benchmarks on proving the partial correctness of loop-free programs (see
Sect. 3.4.3). The last benchmark suite is constructed by us to illustrate
the use of FOOL in program analysis and verification. As Vampire is
the only automated first-order theorem prover supporting FOOL, and in
particular if-then-else and let-in expressions, we could not compare
Vampire with any other first-order prover. Further, Vampire ? did not yet
support tuple expressions in FOOL. Tuple expressions are also not sup-
ported by state-of-the-art SMT solvers. For these reasons, we compared
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Table 3.1. Runtimes in seconds of provers on the set of 57 unsatisfiable
algebraic datatypes problems.

Prover Solved Time on solved problems
Vampire 56 23.470
Vampire ? 56 31.121
Z3 53 3.615
CVC4 53 25.480

Vampire against Vampire ? and the SMT solvers CVC4 [8] and Z3 [27]
only on the experiments from Sect. 3.4.1–3.4.2.

3.4.1 Experiments with
Algebraic Datatypes Problems

We used 152 problems about (co)algebraic datatypes taken from [73].
These examples were generated by Isabelle and translated by us to the
TPTP syntax [83]. These examples are expressed in FOOL, as they use
Boolean variables occurring as formulas, formulas occurring as arguments
to function and predicate symbols, and if-then-else expressions. None
of the 152 problems use let-in expressions.

We evaluated the performance of Vampire, Vampire ?, CVC4 and Z3
on the unsatisfiable problems in this set. In order to filter out satisfiable
problems, we run all the provers on all the problems and only recorded
the runs where at least one of the provers reported unsatisfiability. That
gave us 57 problems.

We ran both Vampire and Vampire ? with the option --mode casc.
For the runs of Vampire, the naming threshold was set to 8. We run
CVC4 and Z3 with their default options.

Table 3.1 summarises our results. They were obtained on a MacBook
Pro with a 2,9 GHz Intel Core i5 and 8 Gb RAM, with a 60 seconds
time limit for each benchmark. Vampire and Vampire ? solved the largest
number of problems, both provers solved the same problems. 51 problems
were solved by all provers. Both Vampire and Vampire ? solved 3 problems,
not solved by either CVC4 or Z3. CVC4 and Z3 solved one problem, not
solved by either Vampire or Vampire ?. Compared to Vampire ?, Vampire
showed significantly smaller runtime. We therefore conclude that our
clausification algorithm for FOOL improved the performance of Vampire
on this set of problems.
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Table 3.2. Runtimes in seconds of provers on the set of 2191 unsatisfiable
SMT-LIB problems.

Prover Solved Uniquely solved Total time on solved
CVC4 2084 55 26,309.47
Vampire 2076 12 22,920.50
Vampire ? 1984 9 19,911.69
Z3 1729 4 18,102.96

3.4.2 Experiments with SMT-LIB Problems
As explained in more detail later on (see Section 3.5), FOOL can be
regarded as a superset of the SMT-LIB core logic. A theorem prover
that supports FOOL can be straightforwardly extended to read problems
written in the SMT-LIB syntax. For our experiments using SMT-LIB
problems, we used problems in quantified predicate logic with uninter-
preted functions stored in the UF subspace of SMT-LIB. These problems
use if-then-else expressions, let-in expressions that define constants,
and formulas occurring as arguments to equality. None of the problems
use quantifiers over the Boolean sort. The problems taken from SMT-LIB
are written in the SMT-LIB 2 syntax. In order to read these problems, we
implemented a parser for a sufficient subset of the SMT-LIB 2 language
in Vampire. The implementation of the parser comprised about 2,500
lines of C++ code.

We evaluated the performance of Vampire, Vampire ?, and CVC4 on
unsatisfiable problems of the UF subspace. Each problem in the SMT-LIB
library is marked with one of the statuses sat, unsat and unknown. A
problem is marked as sat or unsat when at least two SMT solvers proved
it to be satisfiable or unsatisfiable, respectively. Otherwise, a problem is
marked as unknown. In order to filter out satisfiable problems, we ran
Vampire, Vampire ?, and CVC4 on the problems marked as unsat and
unknown and then recorded the results on the problems that were proven
unsatisfiable by at least one prover. That gave us 2191 problems.

We ran Vampire twice on each problem: once with naming of let-in
expressions and once with inlining (see Sect. 3.3.3). For each run the
naming threshold was set to 8. In both runs we also used the option
--mode casc. For each problem, we recorded the fastest successful run
of Vampire. We ran Vampire ? once on each problem with the option
--mode casc.
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Table 3.2 summarises the results of our experiments on the SMT-
LIB problems. These results were obtained on the StarExec compute
cluster [82] using the time limit of 5 minutes per problem. CVC4 solved
the largest number of problems, Vampire solved significantly more than
Vampire ?, and Z3 solved the least number of problems. None of the
provers solved a superset of problems solved by another prover. The
“Uniquely solved” column of Table 3.2 shows the number of problems that
were solved by each of the provers, but not any of the other ones. 1675
problems were solved by all of the provers, and 2190 problems were solved
by at least one of the provers. Vampire solved 111 problems not solved
by Vampire ?, and Vampire ? solved 19 problems not solved by Vampire.

We also recorded how different translations of let-in affected the
performance of Vampire. Vampire with inlining of let-in expressions
solved 61 problems not solved by Vampire without inlining of let-in
expressions. Vampire without inlining of let-in expressions solved 45
problems not solved by Vampire without inlining of let-in expressions.

Based on the results of this experiment we make the following obser-
vations. Vampire solved new problems by inlining let-in expressions and
expanding if-then-else expressions. Vampire could not solve some of
the problems that were solved by Vampire ?, we explain it by the fact
that Vampire ? always names if-then-else expressions, which turns out
to be important for solving some problems. Both inlining and naming of
let-in expressions can make a prover inefficient.

3.4.3 Experiments with
FOOL Reasoning about Programs

In this experiment we evaluated Vampire on FOOL problems that express
partial correctness property of imperative programs. We obtained these
problems manually from a collection of loop-free programs that we in
turn generated from a small set of programs with loops by unrolling their
loops. Both the benchmarks and the results are available at www.cse.
chalmers.se/~evgenyk/fool-tuple-experiments/.

We used five small programs with loops annotated with a safety prop-
erty using the assert command. They are listed in Appendix 3.A. Each
program contains one loop with one or more if-then-else expressions,
assignments and tests over integers, integer arrays and Booleans. Ta-
ble 3.3 summarises the programs used in our experiments: the programs
count_two, count_two_flag and count_three implement versions of
counting elements in an input array using different criteria and ensure
that the sum of counted elements equal to the array length; two_arrays
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and three_arrays sort and compare two, and respectively three arrays
element-wise. We unrolled these program loops 2, 3, 4 and 5 times, re-
sulting in a set of 20 annotated loop-free programs. Figure 3.1 shows the
program count_two and the program obtained by unrolling three times
the loop of count_two.

int a[];
int x = 0, y = 0;
for (int i = 0; i < n; i++) {

if (a[i] > 0) x++; else y++;
}
assert(x + y == n);

int a[];
int x = 0, y = 0;
if (a[0] > 0) x++; else y++;
if (a[1] > 0) x++; else y++;
if (a[2] > 0) x++; else y++;
assert(x + y == 3);

Figure 3.1. The count_two program and the program obtained by un-
rolling it three times.

For each one of the 20 loop-free benchmarks, we expressed its par-
tial correctness as a TPTP problem using FOOL in the combination
of the theory of linear integer arithmetic and the polymorphic theory
of arrays [51]. To this end, (i) we formulated the safety assertion as a
TPTP conjecture and (ii) expressed the transition relation of the program
as a FOOL formula with tuple expressions and let-in expressions with
tuple definitions. We refer to [51] for the details of the translation of
a program’s transition relation to FOOL. In particular, the correctness
of this translation is stated in Theorem 1 of that work. Each FOOL
formula produces by the translation is linear in the size of the program.
Figure 3.2 shows the TPTP translation of the safety property of the
count_two_tptp program. It uses the thf subset of the TPTP language,
which is the standard subset that contains features of FOOL.

The results of the experiments are summarised in Table 3.3. These
results were obtained on a MacBook Pro with a 2,9 GHz Intel Core i5
and 8 Gb RAM, and using the time limit of 60 seconds per problem.
The first column of the table lists the names of the programs with loops,
and columns 2–5 indicate how many time the program loop was unrolled
and gives the time needed by Vampire to prove the correctness of the
corresponding loop-free program.

Based on the results of this experiment we conclude that Vampire
can be used for verification of bounded safety properties of imperative
programs.
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thf(a, type, a: $array($int, $int)).
thf(x, type, x: $int).
thf(y, type, y: $int).

thf(count_two, conjecture,
$let(x := 0,
$let(y := 0,
$let([x, y] := $ite($greater($select(a, 0), 0),

$let(x := $sum(x, 1), [x, y]),
$let(y := $sum(y, 1), [x, y])),

$let([x, y] := $ite($greater($select(a, 1), 0),
$let(x := $sum(x, 1), [x, y]),
$let(y := $sum(y, 1), [x, y])),

$let([x, y] := $ite($greater($select(a, 2), 0),
$let(x := $sum(x, 1), [x, y]),
$let(y := $sum(y, 1), [x, y])),

$sum(x, y) = 3)))))).

Figure 3.2. A FOOL translation of the unrolled program in Figure 3.1
written in the TPTP language.

3.5 Related Work
FOOL is a relatively new extension of FOL. We are not aware of any
work that explicitly deals with clausifying formulas in this logic. However,
connections can be found in work focusing on related fragments and
extensions.

Most notably, Wisniewski et al. propose in [100] methods for nor-
malising formulas in higher-order logic (HOL). Similarly to FOOL, HOL
natively contains the Boolean sort. Wisniewski et al. deal with formulas
occurring at argument positions by a technique called argument extraction
which, similarly to our naming schemes, extends the signature and defines
a new symbol outside the original formula. Moreover, also Wisniewski et
al. introduce Skolem predicates instead of Skolem functions when dealing
with existential Boolean quantifiers. This happens implicitly for them,
since in HOL there is no distinction between formulas and terms.

FOOL can be regarded as a superset of SMT-LIB [9] core logic and
formulas of SMT-LIB core logic can be directly expressed in FOOL. The
language of FOOL extends the SMT-LIB core language with local function
definitions, using let-in expressions defining functions of arbitrary, and
not just zero, arity.
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Table 3.3. Runtimes in seconds of Vampire on 20 problems encoding
partial program correctness.

Problem 2 3 4 5
count_two 0.011 0.016 0.030 0.053
count_two_flag 0.011 0.017 0.028 0.041
count_three 0.023 0.042 0.128 0.522
two_arrays 0.026 0.091 0.237 0.263
three_arrays 0.446 5.368 8.719 14.886

Despite the similarity of the languages, the technology used by modern
SMT solvers [65] differs greatly from that of first-order theorem provers
and so do the approaches to normalising the input formula. In particular,
as SMT solvers pass the propositional abstraction of the input formula
to an efficient SAT solver there is no great need to optimise extensions of
the signature and clausification usually follows the simple Tseitin encod-
ing [95] of the formula tree. Moreover, modern SMT solvers employ an
alternative approach to dealing with quantifiers over interpreted sorts such
as the Booleans, which is complementary to skolemisation and relies on
a guidance by counter-examples [74] or on model-based projections [15].

Finally, it is interesting to note that our VCNFFOOL algorithm nat-
urally translates a quantified Boolean formula (QBF), as realised in the
FOOL language, into a CNF in effectively propositional logic (EPR).
Specifically, every literal in this translation is a Skolem predicate applied
to Boolean variables and constants true and false. This result is similar to
the one proposed in [80], where the authors explicitly focus on QBF as the
source and EPR as the target language, respectively. Obtaining a formula
in EPR is a desirable property since there are first-order proving methods
known to be efficient for dealing with the fragment (see e.g. [50]).

3.6 Conclusion and Future Work
Applications of program analysis and verification rely on SAT/SMT
solvers and/or theorem provers to reason about program properties formu-
lated in various logics. The efficiency of SAT/SMT solvers and theorem
provers critically depends on the used clausification algorithm. In this
paper we presented a new clausification algorithm, called VCNFFOOL,
for formulas expressed in FOOL. Our algorithm is a non-trivial extension
of the recent VCNF clausification algorithm for standard first-order logic.
VCNFFOOL for FOOL introduces Skolem predicates over Boolean vari-
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ables, avoids equalities over Boolean variables, and uses formula naming
and tautology elimination on complex formulas. It also avoids excessively
duplicating clauses and introducing too many new symbols. Thanks to the
our new VCNFFOOL algorithm, proving FOOL formulas requires neither
an axiomatisation of the Boolean sort nor modifications in superposi-
tion calculus. We implemented our work in Vampire and experimentally
showed its benefits on a large number of examples. For future work we
are interested in developing further criteria for controlling naming and
inlining expressions during clausification. Using FOOL for more complex
applications of program analysis is another interesting venue to exploit.
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Appendix 3.A. Imperative Programs with Loops and
if-then-else

int a[];
int x = 0, y = 0;
for (int i = 0; i < n; i++)
{

if (a[i] > 0) x++;
else y++;

}
assert(x + y == n);

count_two

int a[];
int x = 0, y = 0, z = 0;
for (int i = 0; i < n; i++)
{

if (a[i] < 0) x++;
else {

if (a[i] > 5) y++;
else z++;

}
}
assert(x + y + z == n);

count_three

int a[], b[];
for (int i = 0; i < n; i++)
{

if (a[i] > b[i]) {
int t = a[i];
a[i] = b[i];
b[i] = t;

}
}
for (int i = 0; i < n; i++)
{

assert(a[i] <= b[i]);
}

two_arrays

int a[];
bool b;
int x = 0, y = 0;
for (int i = 0; i < n; i++)
{
b = a[i] > 0;
if (b) x++; else y++;

}
assert(x + y == n);

count_two_flag

int a[], b[], c[];
for (int i = 0; i < n; i++)
{

if (a[i] > b[i]) {
int t = a[i];
a[i] = b[i];
b[i] = t;

}
if (b[i] > c[i]) {

int t = b[i];
b[i] = c[i];
c[i] = t;

if (a[i] > b[i]) {
t = a[i];
a[i] = b[i];
b[i] = t;

}
}

}
for (int i = 0; i < n; i++)
{

assert(a[i] <= b[i]);
assert(b[i] <= c[i]);

}

three_arrays
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Chapter 4

A FOOLish Encoding of the Next State
Relations of Imperative Programs

Evgenii Kotelnikov, Laura Kovács and Andrei Voronkov

Abstract. Automated theorem provers are routinely used in program
analysis and verification for checking program properties. These prop-
erties are translated from program fragments to formulas expressed in
the logic supported by the theorem prover. Such translations can be
complex and require deep knowledge of how theorem provers work in
order for the prover to succeed on the translated formulas. Our previous
work introduced FOOL, a modification of first-order logic that extends
it with syntactical constructs resembling features of programming lan-
guages. One can express program properties directly in FOOL and leave
translations to plain first-order logic to the theorem prover. In this paper
we present a FOOL encoding of the next state relations of imperative
programs. Based on this encoding we implement a translation of imper-
ative programs annotated with their pre- and post-conditions to partial
correctness properties of these programs. We present experimental results
that demonstrate that program properties translated using our method
can be efficiently checked by the first-order theorem prover Vampire.

Published in the Proceedings of the 9th International Joint Conference
on Automated Reasoning, pages 405–421. Springer, 2018.
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4.1 Introduction
Automated program analysis and verification requires discovering and
proving program properties ensuring program correctness. These program
properties are usually expressed in combined theories of various data
structures, such as integers and arrays. SMT solvers and first-order
theorem provers that are used to check these properties need efficient
handling of both theories and quantifiers. Moreover, formalisation of the
program properties in the logic supported by the SMT solver or theorem
prover plays a crucial role in making the prover succeed proving program
correctness.

The translation of program properties into logical formulas accepted by
a theorem prover is not straightforward. The reason for this is a mismatch
between the semantics of the programming language constructs and that
of the input language of the theorem prover. If program properties are
not directly expressible in the input language, one needs to implement a
translation of these properties to the language of the theorem prover. Such
translations can be complex and error prone. Furthermore, one might
need deep knowledge of how theorem provers work to obtain formulas in
a form that theorem provers can handle efficiently.

Program verification systems reduce the mismatch between program
properties and their formalisation as logical formulas from two ends. On
the one hand, intermediate verification languages, such as Boogie [60] and
WhyML [31], are designed to represent programs and their properties in a
way that is friendly for translations to logic. On the other hand, theorem
provers extend their supported logics with syntactic constructs that mirror
those of programming languages.

Our previous work introduced FOOL [53], a modification of many-
sorted first-order logic (FOL). FOOL extends FOL with syntactical con-
structs such as if-then-else and let-in expressions. These constructs
can be used to naturally express program properties about conditional
statements and variable updates. Users of a theorem prover that supports
FOOL do not need to invent translations for these features of program-
ming languages and can use features of FOOL directly. It allows the
theorem prover to apply its own translation to FOL that it can use
efficiently. We extended the Vampire theorem prover [57] to support
FOOL [51] and designed an efficient clausification algorithm VCNF [52]
for FOOL.

In summary, FOOL extends FOL with the following constructs.
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• First-class Boolean sort — one can define function and predicate
symbols with Boolean arguments and use quantifiers over the Boolean
sort.

• Boolean variables used as formulas.

• Formulas used as arguments to function and predicate symbols.

• Expressions of the form if ϕ then s else t, where ϕ is a formula,
and s and t are either both terms or formulas.

• Expressions of the form let D1; . . . ;Dk in t, where k > 0, t is either
a term or a formula, and D1, . . . , Dk are simultaneous definitions,
each of the form

1. f(x1 : σ1, . . . , xn : σn) = s, where n ≥ 0, f can be a function
or a predicate symbol, and s is either a term or a formula;

2. (c1, . . . , cn) = s, where n > 1, c1, . . . , cn are constant symbols
of the sorts σ1, . . . , σn, respectively, and s is a tuple expression.
A tuple expression is inductively defined to be either
(a) (s1, . . . , sn), where s1, . . . , sn are terms of the sorts σ1, . . . ,

σn, respectively;
(b) if ϕ then s1 else s2, where ϕ is a formula, and s1 and

s2 are tuple expressions; or
(c) let D1; . . . ;Dk in s′, where D1; . . . ;Dk are definitions,

and s′ is a tuple expression.

To our knowledge, no other logic, efficiently implemented in automated
theorem provers, contains these constructs. Some constructs of FOOL
have been previously implemented in interactive and higher-order theorem
provers. However, there was no special emphasis on the efficiency or
friendliness of the translation for the following processing by automatic
provers.

In this paper, we extend our previous work on FOOL by demonstrat-
ing the efficient use of FOOL for program analysis. To this end, we give
an efficient encoding of the next state relations of imperative programs in
FOOL. Let us motivate our work with the simple program on Figure 4.1.
This program contains an if statement and assignments to integer vari-
ables. The assert statement ensures that x is never greater than y
after execution of the if statement.

To check that the given program assertion holds using an automated
theorem prover, one has to express this assertion as a logical formula.
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if (x > y) {
t := x;
x := y;
y := t;

}
assert(x <= y);

Figure 4.1. An imperative pro-
gram with an if statement.

let (x, y, t) = if x > y then
let t = x in

let x = y in
let y = t in

(x, y, t)
else (x, y, t)

in x ≤ y

Figure 4.2. A FOOL encoding of the
program assertion on Figure 4.1.

For that, one has to express the updated values of x and y after the
sequence of assignments. For example, one can compute the updated
value of each individual variable separately for each possible execution
trace. However, this approach suffers from a bloated resulting formula
that will contain duplicating parts of the program. A more common
technique is to first convert a program to a static single assignment (SSA)
form. This conversion introduces a new intermediate variable for each
assignment and creates a smaller translated formula.

Both excessive naming and excessive duplication of program expres-
sions can make the resulting logical formula very hard for a first-order
theorem prover. The encoding of the next state relations of imperative
programs given in this paper avoids both by using a FOOL formula that
closely matches the structure of the original program (Section 4.3). This
way the decision between introducing new symbols and duplicating pro-
gram expressions is left to the theorem prover that is better equipped to
make it. The assertion of the program in Figure 4.1 is concisely expressed
with our encoding as the FOOL formula on Figure 4.2.

While FOOL offers a concise representation of some programming
constructs, the efficient implementation of FOOL poses a challenge for
first-order theorem provers since their performance on various translations
to CNF can be hampered by the (unintended) use of constructs inter-
fering with their internal implementation, including the use of orderings,
selection and the saturation algorithm. For example, to deal with the
Boolean sort, it is not uncommon to add an axiom like (∀x)(x = 0∨x = 1)
for this sort. Even this simple axiom can cause a considerable growth of
the search space, especially when used with certain term orderings. To
address the challenge of dealing with full FOOL, one needs experimental
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comparison of various translations or various implementations of FOOL.
Our paper is the first one to make such an experimental comparison.

Our encoding uses tuple expressions and let-in expressions with tuple
definitions, available in FOOL. We extend and generalise the use of tuples
in first-order theorem provers by introducing a polymorphic theory of first
class tuples (Section 4.2). In this theory one can define tuple sorts and
use tuples as terms.

Our encoding can be efficiently used in automated program analysis
and verification. To demonstrate this, we report on our experimental
results obtained by running Vampire on program verification problems
(Section 4.4). These verification problems are partial correctness proper-
ties that we generated from a collection of imperative programs using an
implementation of our encoding to FOOL as well as other tools.

Contributions. We summarise the main contributions of this paper
below.

1. We define an encoding of the next state relation of imperative pro-
grams in FOOL and show that it is sound (Section 4.3). Using this
encoding, we define a translation of certain properties of imperative
programs to FOOL formulas.

2. We present a polymorphic theory of first class tuples and its imple-
mentation in Vampire (Section 4.2). To our knowledge, Vampire is
the only superposition-based theorem prover to support this theory.

3. We present experimental results obtained by running Vampire on a
collection of benchmarks expressing partial correctness properties of
imperative programs (Section 4.4). We generated these benchmarks
using an implementation of our encoding to FOOL and other tools.
Our results show Vampire is more efficient on the FOOL encoding
of partial correctness properties, compared with other translations.

4.2 Polymorphic Theory of First Class Tuples
The use of tuple expressions in FOOL is limited. They can only occur
on the right hand side of a tuple definition in let-in. One cannot use a
tuple expression elsewhere, for example, as an argument to a function or
predicate symbol.

In this section we describe the theory of first class tuples that enables
a more generic use of tuples. This theory contains tuple sorts and tuple
terms. Both of them are first class — one can define function and predicate
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symbols with tuple arguments, quantify over the tuple sort, and use tuple
terms as arguments to function and predicate symbols. Tuple expressions
in FOOL, combined with the polymorphic theory of tuples, are tuple
terms.

Definition. The polymorphic theory of tuples is the union of theories
of tuples parametrised by tuple arity n > 0 and sorts τ1, . . . , τn.

A theory of first class tuples is a first-order theory that contains
a sort (τ1, . . . , τn), function symbols t : τ1 × . . . × τn → (τ1, . . . , τn),
π1 : (τ1, . . . , τn) → τ1, . . . , πn : (τ1, . . . , τn) → τn, and two axioms. The
function symbol t constructs a tuple from given terms, and function sym-
bols π1, . . . , πn project a tuple to its individual elements. For simplicity
we will write (t1, . . . , tn) instead of t(t1, . . . , tn) to mean a tuple of terms
t1, . . . , tn. The tuple axioms are

1. exhaustiveness

(∀x1 : τ1) . . . (∀xn : τn)
(π1((x1, . . . , xn)) .= x1 ∧ . . . ∧ πn((x1, . . . , xn)) .= xn);

2. injectivity

(∀x1 : τ1) . . . (∀xn : τn)(∀y1 : τ1) . . . (∀yn : τn)
((x1, . . . , xn) .= (y1, . . . , yn)⇒ x1

.= y1 ∧ . . . ∧ xn
.= yn).

Tuples are ubiquitous in mathematics and programming languages.
For example, one can use the tuple sort (R,R) as the sort of complex
numbers. Thus, the term (a, b), where a : R and b : R represents a
complex number a + bi. One can define the addition function plus :
(R,R)× (R,R)→ (R,R) for complex numbers with the formula

(∀x : (R,R))(∀y : (R,R))
(plus(x, y) .= (π1(x) + π1(y), π2(x) + π2(y))),

(4.1)

where + denotes addition for real numbers.
Tuple terms can be used as tuple expressions in FOOL. If (c1, . . . , cn) =

s is a tuple definition inside a let-in, where c1, . . . , cn are constant sym-
bols of sorts τ1, . . . , τn, respectively, then tuple expression s is a term of
the sort (τ1, . . . , τn).

It is not hard to extend tuple definitions to allow arbitrary tuple terms
of the correct sort on the right hand side of =. For example, one can
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use a variable of the tuple sort. With such extension, Formula 4.1 can
be equivalently expressed using a let-in with two simultaneous tuple
definitions as follows

(∀x : (R,R))(∀y : (R,R))
(plus(x, y) .= let (a, b) = x; (c, d) = y in (a+ c, b+ d)).

(4.2)

Implementation. Vampire implements reasoning with the polymor-
phic theory of tuples by adding corresponding tuple axioms when the in-
put uses tuple sorts and/or tuple functions. For each tuple sort (τ1, . . . , τn)
used in the input, Vampire defines a term algebra [55] with the single
constructor t and n destructors π1, . . . , πn. Then Vampire adds the cor-
responding term algebra axioms, which coincide with the tuple theory
axioms.

Vampire reads formulas written in the TPTP language [90]. The
TFX subset1 of TPTP contains a syntax for tuples and let-in expres-
sions with tuple definitions. The sort (R,R) is represented in TFX as
[$real,$real] and the term (a+ c, b+ d) is represented in TFX as
[$sum(a,c),$sum(b,d)] . Formula 4.2 can be expressed in TPTP as

tff(plus, type,
plus: ([$real,$real] * [$real,$real]) > [$real,$real]).

tff(plus_def, axiom,
![X: [$real, $real], Y: [$real, $real]]:
(plus(X, Y) = $let([[a: $real, b: $real],

[c: $real, d: $real]],
[a, b] := X; [c, d] := Y,
[$sum(a, c), $sum(b, d)]))).

Vampire translates let-in with tuple definitions to clausal normal
form of first-order logic using the VCNF clausification algorithm [52].

4.3 Imperative Programs to FOOL
In this section we discuss an efficient translation of imperative programs
to FOOL. To formalise the translation we define a restricted imperative
programming language and its denotational semantics in Section 4.3.1.
This language is capable of expressing variable updates, if-then-else,
and sequential composition. Then, we define an encoding of the next state
relation for programs of this language, and state the soundness property

1http://www.cs.miami.edu/~tptp/TPTP/Proposals/TFXTHX.html
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of this encoding in Section 4.3.2. Finally, in Section 4.3.3 we show a
translation that converts a program, annotated with its pre-conditions and
post-conditions, to a FOOL formula that expresses the partial correctness
property of that program.

We give (rather standard) definitions of our programming language
and its semantics and use them to define the main contributions of this
section: the encoding of the next state relation (Definition 4.6) and
soundness of this encoding (Theorem 4.1).

4.3.1 An Imperative Programming Language
We define a programming language with assignments to typed variables,
if-then-else, and sequential composition. We omit variable declarations
in our language and instead assume for each program a set of program
variables V and a type assignment η. η is a function that maps each pro-
gram variable into a type. Each type is either int, bool, or array(σ, τ),
where σ and τ are types of array indexes and array values, respectively.
In the sequel we will assume that V and η are arbitrary but fixed.

Programs in our language select and update elements of arrays, in-
cluding multidimensional arrays. We do not introduce a distinguished
type for multidimensional arrays but instead use nested arrays. We write
array(σ1, . . . , σn, τ), n > 1, to mean the nested array type array(σ1,

array(. . . , array(σn, τ) . . .)).

Definition 4.1. An expression of the type τ is defined inductively as
follows.

1. An integer n is an expression of the type int.

2. Symbols true and false are expressions of the type bool.

3. If η(x) = τ , then x is an expression of the type τ .

4. If η(x) = array(σ1, . . . , σn, τ), n > 0, e1, . . . , en are expressions of
types σ1, . . . , σn, respectively, then x[e1, . . . , en] is an expression of
the type τ .

5. If e1 and e2 are expressions of the type τ , then e1
.= e2 is an

expression of the type bool.

6. If e1 and e2 are expressions of the type int, then −e1, e1 + e2,
e1 − e2, e1 × e2 are expressions of the type int.

7. If e1 and e2 are expressions of the type int, then e1 < e2 is an
expression of the type bool.
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8. If e1 and e2 are expression of the type bool, then ¬e1, e1∨e2, e1∧e2
are expressions of the type bool.

Definition 4.2. A statement is defined inductively as follows.

1. skip is an empty statement.

2. If η(x1) = τ1, . . . , η(xn) = τn, n ≥ 1 and e1, . . . , en are expressions
of the types τ1, . . . , τn, respectively, then x1, . . . , xn := e1, . . . , en is
a statement.

3. If η(x) = array(σ1, . . . , σn, τ), n ≥ 1, and e1, . . . , en, e are expres-
sions of types σ1, . . . , σn, τ , respectively, then x[e1, . . . , en] := e is a
statement.

4. If e is an expression of the type bool, s1 and s2 are statements, and
at least one of s1, s2 is not skip, then if e then s1 else s2 is a
statement.

5. If s1 and s2 are statements and neither of them is skip, then s1 ; s2
is a statement.

We say that x1, . . . , xn in the statement x1, . . . , xn := e1, . . . , en and
x in the statement x[e1, . . . , en] := e are assigned program variables. For
each statement s we denote by updates(s) the set of all assigned program
variables that occur in s.

We define the semantics of the programming language by an inter-
pretation function J− K for types, expressions and statements. The in-
terpretation of a type is a set: J int K = Z, J bool K = {0, 1}, and
J array(τ, σ) K = J τ K → Jσ K. The interpretation of expressions and
statements is defined using program states, that is, mappings of program
variables x ∈ V , η(x) = τ to elements of J τ K.

Definition 4.3. Let e be an expression of the type τ . The interpretation
J e K is a mapping from program states to J τ K defined inductively as
follows.

1. Jn K maps each state to n, where n is an integer.

2. J true K maps each state to 1.

3. J false K maps each state to 0.

4. Jx K maps each st to st(x).

5. Jx[e1, . . . , en] K maps each st to st(x)(J e1 K (st)) . . . (J en K (st)).
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6. J e1 ⊕ e2 K maps each st to J e1 K (st)⊕ J e2 K (st),
where ⊕ ∈ { .=,+,−,×, <,∨,∧}.

7. J¬e K maps each st to ¬ J e K (st).

Definition 4.4. Let s be a statement. The interpretation J s K is a
mapping between program states defined inductively as follows.

1. J skip K is the identity mapping.

2. Jx1, . . . , xn := e1, . . . , en K maps each st to st′ such that st′(xi) =
J ei K (st) for each 1 ≤ i ≤ n and otherwise coincides with st.

3. Jx[e1, . . . , en] := e K maps each st to st′ such that

st′(x)(J e1 K (st)) . . . (J en K (st)) = J e K (st)

and otherwise coincides with st.

4. J if e then s1 else s2 K maps each st to J s1 K (st) if J e K (st) = 1 and
to J s2 K (st) otherwise.

5. J s1 ; s2 K is J s2 K ◦ J s1 K.

4.3.2 Encoding the Next State Relation
Our setting is FOOL extended with the theory of linear integer arithmetic,
the polymorphic theory of arrays [51], and the polymorphic theory of first
class tuples (Section 4.2). The theory of linear integer arithmetic includes
the sort Z, the predicate symbol <, and the function symbols +, −, and
×. The theory of arrays includes the sort array(τ, σ) for all sorts τ and
σ, and function symbols select and store. The function symbol select
represents a binary operation of extracting an array element by its index.
The function symbol store represents a ternary operation of updating
an array at a given index with a given value. We point out that sorts
bool, Z, and array(σ, τ) mirror types bool, int and array(σ, τ) of our
programming language, and have the same interpretations.

We represent multidimensional arrays in FOOL as nested arrays2.
To this end we (i) inductively define select(a, i1, . . . , in), n > 1, to be
select(select(a, i1), i2, . . . , in); and (ii) inductively define store(a, i1, . . . , in,
e), n > 1, to be store(a, i1, store(select(a, i1), i2, . . . , in, e)).

2Multidimensional arrays can be represented in FOOL also as arrays with tuple
indexes. We do not discuss such representation in this work.
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Our encoding of the next state relation produces FOOL terms that use
program variables as constants and do not use any other uninterpreted
function or predicate symbols. In the sequel we will only consider such
FOOL terms. For these FOOL terms, η is a type assignment and each
program state can be extended to a η-interpretation, the details of this
extension are straightforward (we refer to [53] for the semantics of FOOL).
We will use program states as η-interpretations for FOOL terms. For
example we will write evalst(t) for the value of t in st, where t is a FOOL
term and st is a program state. We will say that a program state st
satisfies a FOOL formula ϕ if evalst(ϕ) = 1.

To define the encoding of the next state relation we first define a
translation of expressions to FOOL terms. Our encoding applies this
translation to each expression that occurs inside a statement.

Definition 4.5. Let e be an expression of the type τ . T (e) is a FOOL
term of the sort τ , defined inductively as follows.

T (n) = n,where n is an integer.
T (true) = true.
T (false) = false.

T (x) = x.

T (x[e1, . . . , en]) = select(x, T (e1), . . . , T (en)).
T (e1 ⊕ e2) = T (e1)⊕ T (e2),where ⊕ ∈ { .=,+,−, <,×,∨,∧}.
T (−e) = −T (e).
T (¬e) = ¬T (e).

Lemma 4.1. evalst(T (e)) = J e K (st) for each expression e and state st.

Proof. By structural induction on e.

Definition 4.6. Let s be a statement. N (s) is a mapping between FOOL
terms of the same sort, defined inductively as follows.

1. N (skip) is the identity mapping.

2. N (x1, . . . , xn := e1, . . . , en) maps t to

let (x1, . . . , xn) = (T (e1), . . . , T (en)) in t.

3. N (x[e1, . . . , en] := e) maps t to

let x = store(x, T (e1), . . . , T (en), T (e)) in t.
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4. N (if e then s1 else s2) maps t to

let (x1, . . . , xn) = if T (e) then N (s1)((x1, . . . , xn))
else N (s2)((x1, . . . , xn))

in t,

where updates(s1) ∪ updates(s2) = {x1, . . . , xn}.

5. N (s1 ; s2) is N (s1) ◦ N (s2).

The following theorem is the soundness property of translation N .
Essentially, it states that N encodes the semantics of a given statement
as a FOOL formula.

Theorem 4.1. evalst(N (s)(t)) = evalJ s K(st)(t) for each statement s, state
st and FOOL term t.

Proof. By structural induction on s.

4.3.3 Encoding the Partial Correctness Property
We use the encoding of the next state relation to generate partial cor-
rectness properties of programs annotated with their pre-conditions and
post-conditions.

We define an annotated program to be a Hoare triple {ϕ} s {ψ}, where
s is a statement, and ϕ and ψ are formulas in first-order logic. We say that
{ϕ} s {ψ} is correct if for each program state st that satisfies ϕ, J s K (st)
satisfies ψ. We translate each annotated program {ϕ} s {ψ} to the FOOL
formula ϕ⇒ N (s)(ψ).

Theorem 4.2. Let {ϕ} s {ψ} be an annotated program. The FOOL
formula ϕ⇒ N (s)(ψ) is valid iff {ϕ} s {ψ} is correct.

Proof. Directly follows from Theorem 4.1.

We point out the following two properties of the encoding N . First,
the size of the encoded formula is O(v · n), where v is the number of
variables in the program and n is the program size as each program
statement is used once with one or two instances of (x1, . . . , xn). Second,
the encoding does not introduce any new symbols. When we translate
program correctness properties to FOL, both an excessive number of new
symbols and an excessive size of the translation might make the encoded
formula hard for a theorem prover. Instead of balancing between the two,
encoding to FOOL leaves the decision to the theorem prover.
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4.4 Experiments
In this section we describe our experiments on comparing the performance
of the Vampire theorem prover [57] on FOOL and on translations of pro-
gram properties to FOL. We used a collection of 50 programs written
in the Boogie verification language [60]. Each of these programs uses
only variable assignments, if-then-else statements, and sequential com-
position and is annotated with its pre-conditions and post-conditions,
expressed in first-order logic. From this collection of programs we gener-
ated the following three sets of benchmarks.

1. 50 problems in first-order logic written in the SMT-LIB language [10].
We generated these problems by running the front end of the Boo-
gie [6] verifier.

2. 50 FOOL problems with tuples generated by running our implemen-
tation of the translation from Section 4.3.3, named Voogie.

3. 50 FOOL problems generated by running the BLT [23] translator.

We point out that in our experiments we do not aim to compare
methods of program verification or specific verification tools. Rather, we
compare different ways of translating realistic verification problems for
theorem provers.

In what follows, we describe the collection of imperative programs
used in our experiments (Section 4.4.1) and discuss our set of benchmarks
(Section 4.4.2). All properties that we deal with use integers and arrays, as
well as universal and existential quantifiers. To verify these properties one
has to reason in the combination of theories and quantifiers. We briefly
describe how Vampire implements this kind of reasoning in Section 4.4.3.
Our experimental results are summarised in Tables 4.1–4.3 and discussed
in Section 4.4.4.

4.4.1 Examples of Imperative Programs
We demonstrate the work of our translation on a collection of imperative
programs that only use variable assignments, if-then-else statements,
and sequential composition. Unfortunately, no large collections of such
programs are available. There are many benchmarks for software verifi-
cation tools, but most of them use control flow statements not covered in
this work, such as gotos and exceptions. We also cannot use benchmarks
from the hardware verification and model checking communities, because
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they are mostly about Boolean values and bit-vectors. For our experi-
ments we generated our own imperative programs in two steps described
below.

First, we crafted 10 programs that implement textbook algorithms
and solutions to program verification competitions. Each program uses
variables of the integer, Boolean, and array type. Each program contains
a single while loop of the form while e do s, where e is a Boolean expres-
sion and s is a statement. In addition, each program contains variable
assignments, if-then-else statements, and sequential composition. We
annotated each program with its pre-condition ϕ and each loop with its
invariant ψ. The formulas ϕ and ψ are expressed in first-order logic.

Then, we unrolled the loop of each program k times, where k is
an integer between 1 and 5. This resulted in 50 loop-free programs
that retain the annotated properties. Each program encodes the loop
invariant property of the original program. Multiple unrollings provide
us with programs with long sequences of variables updates, if-then-else
statements and compositions, which are convenient for our experiments.
Our loop unrolling program transformation consisted of the following
steps.

1. Introduce a fresh Boolean variable bad that encodes the under-
specified state of the program.

2. Construct a guarded loop iteration i as

if ¬e then bad := true else skip ; s.

3. Construct a sequence of iterations i ; . . . ; i, where i is repeated k

times.

4. Finally, construct the annotated program

{ϕ ∧ ψ} i ; . . . ; i {¬bad ⇒ ψ}.

It is not hard to show that if a program with a loop satisfies its
specification, then the Hoare triple resulting in step 4 of the above trans-
formation also holds.

We wrote our example programs with loops as well as their loop-
free unrolled versions in the Boogie language. Boogie can unroll loops
automatically, but introduces goto statements that our translation does
not support. For this reason, we used the loop unrolling described above.

106



An example of our loop unrolling is available at http://www.cse.
chalmers.se/~evgenyk/ijcar18/. It shows the maxarray program with
a loop from our collection and a program generated from maxarray by
unrolling its loop twice.

4.4.2 Benchmarks
We used the 50 annotated loop-free programs and generated their partial
correctness statements using Boogie, Voogie and BLT. These statements
are encoded as unsatisfiable problems in first-order logic and FOOL. Our
collection of imperative programs with loops, their loop-free unrollings
and benchmarks expressed in the TPTP language [83] is available at http:
//www.cse.chalmers.se/~evgenyk/ijcar18/. The TPTP benchmarks
are also available, along with other FOOL problems, on the TPTP website
http://tptp.org.

The Boogie verifier generates verification conditions as formulas in
first-order logic written in the SMT-LIB language and uses the SMT
solver Z3 [27] to check these formulas. We ran Boogie with the option
/proverLog to print the generated formulas on each of our annotated
loop-free programs and in this way obtained a collection of 50 SMT-LIB
benchmarks.

Voogie is our implementation of the translation described in Sec-
tion 4.3. It takes as input programs written in a fragment of the Boogie
language and generates FOOL formulas written in the TPTP language.
The source code of Voogie is available at https://github.com/aztek/
voogie.

The fragment of the Boogie language supported by Voogie can be
seen as the smallest fragment that is sufficient to represent the loop-
free programs in our collection. This fragment consists of (i) top level
variable declarations; (ii) a single procedure main annotated with its
pre- and post-conditions; (iii) assignments to variables, including paral-
lel assignments, and assignments to array elements; (iv) if-then-else
statements; and (v) arithmetic and Boolean operations. Running Voogie
on each loop-free program in our collection gave us 50 TPTP bench-
marks. An example of the TPTP benchmark obtained from running
Voogie on the maxarray program with its loops unrolled twice is available
at http://www.cse.chalmers.se/~evgenyk/ijcar18/.

BLT (Boogie Less Triggers) [23] is an automatic tool that takes Boogie
programs as input and generates their verification conditions in first-order
logic written in the TPTP language. BLT has an experimental feature
of generating FOOL formulas with tuple let-in and tuple expressions
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to represent next state values of program variables in a style similar to
Voogie. At the time of our experiments, this feature was not stable enough,
and we did not enable it. Running BLT with its default configuration
on each of the 50 loop-free programs in our collection gave us 50 TPTP
benchmarks.

The representation of program expressions coincides in all three trans-
lations. All translations use the theory of linear integer arithmetic and
the theory of arrays as realised in their respective languages.

4.4.3 Theories and Quantifiers in Vampire
Vampire’s main algorithm is saturation of a set of first-order clauses using
the resolution and superposition calculus. Vampire also implements the
AVATAR architecture [97] for splitting clauses. The idea behind AVATAR
is to use a SAT or an SMT solver to guide proof search. AVATAR
selects sub-problems for the saturation-based prover to tackle by making
decisions over a propositional abstraction of the clause search space. The
-sas option of Vampire selects the SAT solver.

Vampire handles theories by automatically adding theory axioms to
the search space whenever an interpreted sort, function, or predicate is
found in the input. This approach is incomplete for theories such as
linear and non-linear integer and real arithmetic, but shows good results
in practice. The -tha option of Vampire with values on and off controls
whether theory axioms are added.

A recent work [69] lifted AVATAR to be modulo theories by replacing
the SAT solver by an SMT solver, ensuring that the sub-problem is theory-
consistent in the ground part. The result is that the saturation prover
and the SMT solver deal with the parts of the problem to which they are
best suited. Vampire implements AVATAR modulo theories using Z3.

Our experience with running Vampire on theory- and quantifier-in-
tensive problems shows that some of the theory axioms can degrade the
performance of Vampire. These axioms make Vampire infer many theory
tautologies making the search space larger. We found that, among others,
axioms of commutativity, associativity, left and right identity, and left
and right inverse of arithmetic operations are in this sense “expensive”.
Our solution to this problem is a more refined control over which theory
axioms Vampire adds to the search space. We added to the -tha option
of Vampire a new value named some that makes Vampire only add “cheap”
axioms to the search space. some implements our empirical criterion for
choosing theory axioms. Designing other criteria for axiom selection is
an interesting task for future work.
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Table 4.1. Runtimes in seconds of Vampire on the Boogie translation of
the benchmarks.

Benchmark Number of loop unrollings
1 2 3 4 5

binary-search 0.884 2.420 3.364 10.709 27.648
bubble-sort – – – – –
dutch-flag 24.789 – – – –
insertion-sort 122.354 – – – –
matrix-transpose 1.311 – 1.078 – –
maxarray 0.205 0.587 1.197 1.702 1.692
maximum 0.066 0.078 0.082 0.095 0.129
one-duplicate – – – – –
select-k 96.993 – – – –
two-way-sort 0.191 0.205 0.647 1.384 1.344

4.4.4 Experimental Results
For our experiments, we compared the performance of Vampire on the
Boogie, Voogie, and BLT translations of our benchmarks.

We ran Vampire on all three sets of benchmarks with options -tha some
and -sas z3. Vampire supports both TPTP and SMT-LIB syntax,
the input language is selected by setting the --input_syntax option
to tptp and smtlib2, respectively. We performed our experiments on
the StarExec compute cluster [82] using the time limit of 5 minutes
per problem. The detailed experimental results are available at http:
//www.cse.chalmers.se/~evgenyk/ijcar18/.

Tables 4.1 and 4.2 summarise the results of Vampire on the Boogie
and Voogie translations of the benchmarks, respectively. A dash means
that Vampire does not solve the problem within the given time limit.

• Vampire solves 25 of the problems, translated by Boogie, and 36
problems, translated by Voogie.

• For 16 benchmark programs, Vampire solves their Voogie transla-
tions, but not the Boogie translations.

• For 5 benchmark programs, Vampire solves their Boogie transla-
tions, but not the Voogie translations.

• For 20 benchmark programs, Vampire solves both of their transla-
tions, and is faster on the Voogie translations for 12 of them.

Table 4.3 summarises the results of Vampire on the BLT translations
of the benchmarks.
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Table 4.2. Runtimes in seconds of Vampire on the Voogie translation of
the benchmarks.

Benchmark Number of loop unrollings
1 2 3 4 5

binary-search 1.979 25.135 6.560 – 163.803
bubble-sort 0.394 53.192 2.073 – –
dutch-flag 11.384 – – – –
insertion-sort 18.262 38.169 3.369 21.698 11.639
matrix-transpose 0.266 8.362 – – –
maxarray 0.170 0.587 0.489 2.635 6.325
maximum 0.062 0.065 0.070 0.087 0.102
one-duplicate 0.125 2.402 2.231 93.746 145.243
select-k 0.216 0.612 203.655 – –
two-way-sort 0.464 5.360 – – –

• Vampire solves 19 of the problems, translated by BLT.

• For all benchmark programs whose BLT translation Vampire is
able to solve, Vampire also solves their Voogie translations. There
are 3 benchmark programs for which Vampire solves their BLT
translations but not their Boogie translations.

Based on the results presented in Tables 4.1–4.3 we make the following
observation. The problems translated from our benchmarks by Voogie
are easier for Vampire than the problems translated by Boogie and BLT.
Vampire is more efficient both in terms of the number of solved problems
and runtime on the problems translated by Voogie. This confirms our
conjecture that the use of (efficient translations of) FOOL is better for
saturation theorem provers than translations to FOL designed for other
purposes. It would be interesting to run these experiments for theorem
provers other than Vampire, however Vampire is currently the only prover
implementing FOOL.

4.5 Related Work
Our previous work introduced FOOL [53], its implementation in Vam-
pire [51], and an efficient clausification algorithm for FOOL formulas [52].

In [51] we sketched a tuple extension of FOOL and an algorithm for
computing the next state relations of imperative programs that uses this
extension. This paper extends and improves the algorithm. In particular,
(i) we described an encoding that uses FOOL in its current form, available
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Table 4.3. Runtimes in seconds of Vampire on the BLT translation of the
benchmarks.

Benchmark Number of loop unrollings
1 2 3 4 5

binary-search 0.821 163.790 – – –
bubble-sort 3.511 – – – –
dutch-flag 4.049 – – – –
insertion-sort 1.780 – – – –
matrix-transpose 0.465 12.437 – – –
maxarray 0.174 1.567 47.724 – –
maximum 0.069 0.140 0.724 12.234 –
one-duplicate 0.307 10.039 – – –
select-k 3.142 – – – –
two-way-sort 0.319 24.622 – – –

in Vampire, (ii) we refined the encoding to only use in let-in the variables
updated in program statements, (iii) we gave the definition of the encoding
formally and in full detail, and (iv) we presented experimental results
that confirm the described benefits of the encoding.

Boogie is used as the name of both the intermediate verification lan-
guage [60] and the automated verification framework [6]. The Boogie
verifier encodes the next state relations of imperative programs in first-
order logic by naming intermediate states of program variables [59].

BLT [23] is a tool that automatically generates verification conditions
of Boogie programs. The aim of the BLT project is to use first-order
theorem provers rather than SMT solvers for checking quantified pro-
gram properties. BLT produces formulas written in the TPTP language
and uses if-then-else and let-in constructs of FOOL. BLT has an ex-
perimental option that introduces tuples for encoding of the next state
relation. This option implements the encoding described in our earlier
work [51].3

3Another related work not mentioned in the original paper is [78]. This work
describes a datastructure Updates that captures updates of the program state during
symbolic execution. Some of the features of Updates resemble if-then-else and let-in
expressions of FOOL. Updates is defined as a formal language independently from
any particular program logics. Our approach to the representation of updates to the
program states differs from this work in that the updates are encoded directly in the
logical formulas and in effect communicated to the theorem prover.
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4.6 Conclusion and Future Work
We presented an encoding of the next state relations of imperative pro-
grams in FOOL. Based on this encoding we defined a translation from
imperative programs, annotated with their pre- and post-conditions, to
FOOL formulas that encode partial correctness properties of these pro-
grams. We presented experimental results obtained by running the theo-
rem prover Vampire on such properties. We generated these properties
using our translation and verification tools Boogie and BLT. We described
a polymorphic theory of first class tuples and its implementation in Vam-
pire.

The formulas produced by our translation can be efficiently checked
by automated theorem provers that support FOOL. The structure of our
encoding closely resembles the structure of the program. The encoding
contains neither new symbols nor duplicated parts of the program. This
way, the efficient representation of the problem in plain first-order logic
is left to the theorem prover that is better equipped to do it.

Our encoding is useful for automated program analysis and verification.
Our experimental results show that Vampire was more efficient in terms
of the number of solved problems and runtime on the problems obtained
using our translation.

FOOL reduces the gap between programming languages and languages
of automated theorem provers. Our encoding relies on tuple expressions
and let-in with tuple definitions, available in FOOL. To our knowledge,
these constructs are not available in any other logic efficiently imple-
mented in automated theorem provers.

The polymorphic theory of first class tuples is a useful addition to a
first-order theorem prover. On the one hand, it generalises and simplifies
tuple expressions in FOOL. On the other hand, it is a convenient theory
on its own, and can be used for expressing problems of program analysis
and computer mathematics.

For future work we are interested in making automated first-order
theorem provers friendlier to program analysis and verification. One
direction of this work is design of an efficient translation of features
of programming languages to languages of automated theorem provers.
Another direction is extensions of first-order theorem provers with new
theories, such as the theory of bit vectors. Finally, we are interested in
further improving automated reasoning in combination of theories and
quantifiers.
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Chapter 5

Checking Network Reachability
Properties by Automated Reasoning
in First-Order Logic

Evgenii Kotelnikov and Pavle Subotić

Abstract. Verification of computer networks is an important and chal-
lenging task, often tackled with constraint solving and automated rea-
soning. This work presents an approach for checking and discovering
reachability properties of virtual private cloud networks using automated
reasoning in first-order logic. Reachability properties of a network express
whether its configuration allows the network traffic to flow between given
nodes of the network. We model networks with Horn clauses and check
first-order properties of these models using Vampire both as a finite model
builder and as a saturation theorem prover.

A technical report based on a joint work with Byron Cook, Temesghen
Kahsai and Sean McLaughlin, 2018.
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5.1 Introduction
Computer networks are typically built from a variety of specialised het-
erogeneous devices running complex distributed protocols. Network ad-
ministrators, responsible for operability of a network, must configure and
deploy every protocol separately on each individual device. In an effort
to simplify this task, software-defined networking (SDN) [58] has been
proposed as a modern alternative. SDN provides an layer of software
that is installed on each of the network devices and a logically-centralised
controller that manages connectivity settings of each device. In this way
administrators can manage networks at a higher level of abstraction by
programming them from the controller, typically in a domain specific
language [33]. The SDN architecture is often credited with flexibility and
ease of maintenance compared to traditional networks [13].

Modern platforms for cloud computing such as Amazon Elastic Com-
pute Cloud, Google Compute Engine and Azure Virtual Machines offer
their users means of configuring virtual private cloud (VPC) networks
in the style of SDN. Administrators of such networks use a centralised
control panel or a specialised API to launch network nodes, set up subnets
and route tables, and tune connectivity and security settings of the net-
work. Despite the increase of usability provided by the cloud platforms,
VPC networks remain prone to misconfigurations. These misconfigura-
tions are caused by the complexity of large-scale enterprise networks and
might lead to downtimes and breaches of security. Discovering such mis-
configurations in industrial-sized networks is both labor-intensive and
computationally hard.

The presence of a centralised network configuration facilitates auto-
mated analysis and synthesis of SDN networks. Indeed, several tools
have been developed [32, 44, 16, 5, 47, 1, 62, 30, 43] in an effort to verify,
synthesise and repair various SDN components. These tools employ spe-
cialised algorithms [47] as well as general purpose reasoning engines such
as Datalog [40, 30, 32], BDD [1], SMT [44, 16] and SAT [62, 5].

Despite the vast body of available tools, the problem of practical veri-
fication of enterprise networks remains a challenge. The size and intricacy
of modern industrial-sized networks results in very difficult constraint
satisfaction problems. While most network verification tools depend on a
single constraint solving paradigm, we find that no single solver achieves
best performance on all verification problems. We are interested in check-
ing properties of VPC networks using complementary constraint solvers.
Our ultimate goal is to build a portfolio of constraint solvers that lever-
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ages the advantages of different types of solvers on different types of
properties.

In an effort towards this goal in this work we investigate whether
automated reasoning tools in first-order logic can be in some cases more
efficient at solving network verification problems than other types of
solvers. In particular, we are interested in using saturation-based theorem
provers and finite model builders. Saturation-based theorem provers
employ various techniques and heuristics to control the exploration of the
search space. In contrast, many other type of solvers explore the search
space exhaustively. Therefore, we expect superposition-based theorem
provers to have an advantage over other solvers on network properties
encoded as unsatisfiability of first-order formulas. This work presents
such an encoding.

We consider reachability properties that express whether the network
traffic is able to flow between given nodes of a VPC network. The traffic
flow in these networks is typically controlled by the rules assigned to
various networking components provided by the cloud platform. These
components include subnets, route tables, access control lists, internet
gateways and others. Let us illustrate these properties using the following
example of a VPC network on Figure 5.1.

Web Subnet - 
10.0.0.0/24

Database Subnet - 
10.0.1.0/24

ins-a ins-b ins-c

ins-d ins-e ins-f

Internet Gateway - 
igw-id

10.0.0.5 10.0.0.6 10.0.0.7

10.0.1.5 10.0.1.6 10.0.1.7

245.10.1.5 245.10.1.6 245.10.1.7

ACLs

In Out

In Out

100, 0.0.0.0/0, TCP, 80, A

110, 0.0.0.0/0, TCP, 443, A
120, 22.1.2.*, TCP, 22, A

…..
*, 0.0.0.0/0, TCP, *, D

100, 0.0.0.0/0, TCP, 80, A

120, 10.0.1.0/24, TCP, 445, A

*, 0.0.0.0/0, TCP, *, D
…..

110, 0.0.0.0/0, TCP, 443, A 110, 0.0.0.0/0, TCP, 443, A

*, 0.0.0.0/0, TCP, *, D *, 0.0.0.0/0, TCP, *, D

Figure 5.1. An example of a VPC network.

This network consists of an internet gateway, two subnets “Web” and
“Database” and three network nodes in each of them. Each of the subnets
is assigned with a route table (on the right) and an access control list
(ACL, on the left). The route tables allow the network traffic to flow
between the subnets and between the “Web” subnet and the internet
gateway. In other words, the network nodes in the “Web” subnet are
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accessible from the internet, while the nodes in the “Database” subnet
are not. An ACL consists of rules that filter the network traffic to and
from its subnet. In our example, one of the ACL rules of the “Database”
subnet forbids SSH access to its nodes, both directly and through an
intermediate node.

Imagine that this network grows over time and has more nodes and
security and access rules added to it. A network administrator may want
to make sure that the network retains certain properties after each change
in its configuration. For example, the network administrator may want
to check the following property.

Example 5.1. All network nodes in the subnet “Web” can access all
network nodes in the subnet “Database”.

The network administrator might also want to know which networking
components satisfy a given property, such as the ones described in the
following example.

Example 5.2. All network nodes that have the port 22 (SSH) accessible
from the internet.

We will refer to questions that network administrators might want to
answer, such as the ones in Examples 5.1 and 5.2, as network questions.
In particular, we will refer to questions similar to Example 5.1 as yes-no
questions, because an answer to them is “yes” or “no”, and to questions
similar to Example 5.2 as list questions, because an answer to them is a
list of networking components. Each yes-no question can be equivalently
phrased as a list question such that the answer to the yes-no question
is “yes” iff the answer to the correspondent list questions is not empty.
However, we distinguish these two types of questions because, as we show
later, we can more efficiently answer them using different techniques.

Answering network questions manually might be tedious and error-
prone in an industrial-size network. For this reason it is necessary to auto-
mate this task with specialised tools. In this work we employ automated
reasoning tools for first-order logic. To this end, we build static models
of VPC networks (Section 5.2), translate these models and network ques-
tions about them to problems in first-order logic (Section 5.4) and check
these problems using finite model builders and saturation-based theorem
provers (Section 5.3). In Section 5.3 we argue that for our purposes these
two types of reasoning tools complement each other: finite model builders
can more efficiently answer list questions and saturation-based theorem
provers can more efficiently answer yes-no questions. In Section 5.5 we
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cite related work and in Section 5.6 we describe the challenges that we
faced in this work and outline future work.

5.2 Network Reachability Properties
We answer network questions by building a static model of the network
and reasoning about properties of this model. Our network model consists
of two parts, the formal specification and the snapshot of the network.
The specification formalises the semantics of each of the components
available in the network. For example, the formal specification describes
how a route table directs network traffic in a subnet or in which order a
firewall applies rules in an access control list. The snapshot describes the
topology of the given network. For example, the snapshot contains the list
of network nodes, subnets and their route tables. Naturally, the formal
specification in the model of each particular VPC network is the same,
whereas the snapshot differs. We used models of Amazon VPC networks
as part of our ongoing work on network verification using complementary
constraint solvers. We express network questions in the language of many-
sorted first-order logic. In this section we describe syntax and semantics
of network models and network questions.

5.2.1 Network Models
A network model is a finite set of first-order Horn clauses expressed in
a logic programming style. We disallow function symbols with positive
arity and allow stratified negation. We assume the plain logic program-
ming semantics for these Horn clauses, defined in the standard way (see
e.g. [61]). In particular, we make the closed-world assumption and treat
negation as failure. In addition, our network models use equality and the
theory of bit vectors to describe ports, port ranges, IPv4 addresses and
subnet masks.

A signature of the network model is a triple (T,C, P ), where T is a
set of types, C is a set of constants and P is a set of predicates. We
assign each constant with a type τ ∈ T and each predicate with a type
τ1 × . . . × τn (n ≥ 0), where τi ∈ T for each 1 ≤ i ≤ n. We assume a
countable infinite set of variables. We assign each variable with a type
τ ∈ T . We call a term of the type τ ∈ T a constant or a variable of
that type. We call an atom an expression of the form p(t1, . . . , tn), where
n > 0, p ∈ P is a predicate of the type τ1× . . .× τn and each ti, 1 ≤ i ≤ n
is a term of the type τi. We call a literal an atom or its negation.
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A rule is a Horn clause of the form A← L1 ∧ . . . ∧Ln (n ≥ 0), where
the head of the rule A is an atom and each of L1, . . . , Ln is a literal. If
n = 0 and all arguments of A are constants then we call such rule a fact.
We call a definition of the predicate p ∈ P the set of all rules in the
network model that use p in their head.

The specification part of the model contains types, constants, predi-
cates and rules that describe the semantics of the networking components
used in the network. For example, the specification defines the semantics
of SSH tunneling. One network node can SSH tunnel to another node
iff it can either connect to it over SSH directly, or through a chain of
one or more intermediate nodes. In order to express this concept, the
specification contains predicates canSshTunnel and canSsh, each of the
type node × node, and the two following rules.

canSshTunnel(Node1,Node2)← canSsh(Node1,Node2).
canSshTunnel(Node1,Node2)← canSshTunnel(Node1,Node3)

∧ canSshTunnel(Node3,Node2).

The snapshot part of the model contains constants and facts that de-
scribe the configuration of the networking components in a given network.
For example, the snapshot of a network with a single node i-abcd1234 in a
single subnet “Web” consists of the constants nodeabcd1234 and subnetWeb,
and the fact nodeHasSubnet(nodeabcd1234, subnetWeb).

We assume that the signature contains (i) types bits16 and bits32 ;
(ii) 216 constants of the type bits16 ; (iii) 232 constants of the type bits32 ;
(iv) predicates bits16≤ and bits16≥ of the type bits16 ×bits16 with a spe-
cial semantics; and (v) predicate bits32∧ or the type bits32×bits32×bits32
with a special semantics. bits16 and bits32 represent the types of 16-bit
and 32-bit vectors. The semantics of the predicates is that of the corre-
spondent operations over bit vectors defined in the standard way.

The network specification uses 16-bit vectors to encode port numbers
(as integers between 0 and 65535) and port ranges, and 32-bit vectors
to encode IPv4 addresses and subnet masks. Port ranges are repre-
sented using the type portRange and the predicate portRange of the type
portRange × bits16 × bits16 . For example, the port range 0–1023 is rep-
resented as the constant portRange0–1023 of the type portRange and the
fact portRange(portRange0–1023, bits16 0, bits16 1023), where bits16 0 and
bits16 1023 are constants of the type bits16 . The network specification
contains the following definition of the predicate portRangeOverlap of the
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type portRange × portRange that holds when two port ranges overlap.

portRangeOverlap(Range1,Range2)← portRange(Range1,From1,To1)
∧ portRange(Range2,From2,To2)
∧ bits16≤(From1,To2)
∧ bits16≤(From2,To1).

Finally, we assume that for each type τ ∈ T the signature contains
the predicate =τ of the type τ × τ interpreted as equality.

The specification of Amazon VPC networks that we used in this work
consists of approximately 50 types, 200 predicates and over 240 rules.

5.2.2 Network Questions
We express network questions as formulas of many-sorted first-order logic
with the standard logical connectives ∨, ∧, ⇒, ⇔, ⊕ and equality. These
formulas only use types, constants and predicates from the signature of
the network model. The formulas do not use any function symbols. We
allow interpretation of these formulas to use empty domains and otherwise
assume the standard semantics of many-sorted first-order logic.

We express yes-no questions as closed formulas, that is, formulas in
which all variables are bound by a quantifier. Conversely, we express
list questions as formulas with free variables. The answer to a yes-no
question is “yes” iff its correspondent formula is valid. The answer to a
list question is the set of substitutions of free variables with constants
that satisfy its correspondent formula.

Formula 5.1 expresses the yes-no question in Example 5.1.

(∀w : node)(∀d : node)
(nodeHasSubnet(w, subnetWeb) ∧
nodeHasSubnet(d, subnetDatabase)⇒

nodeCanConnectToNode(w, d))

(5.1)

Formula 5.2 expresses the list question in Example 5.2. In this formula
n of the type node is a free variables.

reachablePublicTcpUdp(dir ingress, proto6, n, port22,

publicIp8:8:8:8, port40000)
(5.2)

All predicates and constants used in Formulas 5.1 and 5.2 are part of
the signature of the network model. Constants subnetWeb and subnetDatabase
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are part of the network snapshot, and all other predicates and constants
are part of the network specification.

5.3 Checking Properties with Theorem Provers
We translate network models and network questions to problems in first-
order logic. Some of these problems use theories. We solve these problems
using saturation-based theorem provers and finite model builders. We use
the combination of these two types of provers to leverage the strengths
of both of them, which we summarize below.

Saturation-based theorem provers such as E [79], Spass [99] or Vam-
pire [57] construct proofs of unsatisfiability of first-order problems. To
that end, they first convert the input problem into a set of first-order
clauses and then try to derive contradiction from it. Theorem provers
saturate the search space by inferring new clauses with inference rules
such as binary resolution [4] and superposition [66]. They employ multiple
techniques to prune the search space such as simplification orderings, se-
lection functions and redundancy elimination. Saturation-based provers
handle theories by adding incomplete first-order theory axioms to the
set of clauses and by using specialised inference rules. In addition to
that, Vampire implements the AVATAR modulo theories [69] architec-
ture that relies on an SMT solver for theory-consistent reasoning in the
ground subset of the problem. Saturation-based provers are designed
to efficiently solve unsatisfiable problems. Given a satisfiable problem,
saturation-based provers can in rare cases report satisfiability and out-
put the saturated set of clauses. However, it is usually not possible to
reconstruct a model from this set.

Finite model builders (finders) construct finite counter-models of first-
order problems. One of the most successful methods for finite model
building was pioneered by the finite model builder MACE [63]. This
method iterates over possible domain sizes, for each domain size grounds
the first-order problem with this domain, and translates the resulting
formula to a SAT problem. If the SAT problem is satisfied, a finite
model of the selected size is reconstructed from the SAT model. Finite
model builders Gandalf [93], Paradox [24] and Vampire [72] implement the
MACE-style method. Finite model builders generally do not support the-
ories with the notable exception of SMT solver CVC4 [8] that integrates
model finding techniques into theory reasoning [75]. Finite model builders
are designed to efficiently solve satisfiable problems. Given an unsatisfi-
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Output of a reasoning tool Yes-no question List question
Saturation found unsat yes empty list
Saturation found sat no error
FMB found unsat yes empty list
FMB found a model no list of answers

Table 5.1. Solutions found by saturation-based theorem provers and finite
model builders (FMB) interpreted as answers to network questions.

able problem, some finite model builders might detect that the problem
cannot have infinite models and in such case report unsatisfiability.

We translate (i) each yes-no question to a first-order problem that
is unsatisfiable iff the answer to the question is “yes”; and (ii) each
list question to a first-order problem such that each of its finite models
corresponds to an answer to the network question. Table 5.1 summarises
how we interpret a solution found by a reasoning tool as the answer to
the network question. Saturation-based theorem provers generally cannot
answer list questions except for the degenerate case when the answer is
empty. With this exception, both types of provers are able to answer
both types of network questions.

We run a finite model builder and a saturation-based prover in parallel
on each problem and record the result of the fastest successful run. We
expect that in most cases (i) a yes-no question can be answered with
“yes” by the saturation-based prover and with “no” by the finite model
builder; and (ii) a list question can be answered with the empty list by
the saturation-based prover and with a non-empty list by the finite model
builder.

In this work we used the Vampire theorem prover both as a saturation-
based theorem prover and a finite model builder. Our translation produces
problems expressed in a logic supported by Vampire, namely many-sorted
first-order logic with equality, extended with the theory of linear integer
arithmetic, the theory of arrays [51] and the theory of tuples [54]. We
wrote the problems in the TPTP language [83].

Each problem tackled by a saturation-based theorem prover or a finite
model builder consists of the first-order formula ϕ that expresses the
network question and first-order axioms A1, . . . , An that we translate
from the network model. We translate each yes-no question to a problem
of the form A1 ∧ . . . ∧ An ⇒ ¬ϕ and each list question to a problem
of the form A1 ∧ . . . ∧ An ∧ (∀z̄)(q(z̄) ⇔ ϕ) ⇒ (∀z̄)q(z̄), where q is a
fresh predicate symbol and z̄ are fresh free variables of ϕ. We reconstruct
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the answer to a list question from the model of the q predicate — each
substitution of z̄ that satisfies q is an answer to the question.

5.4 Network Reachability as a First-Order Problem
Our translation of network models to problems in first-order logic consists
of translations of types, constants, predicate definitions and theories. We
translate types, constants (Section 5.4.1) and predicate definitions (Sec-
tion 5.4.2) using Clark completion [25]. We use specialised translations
for the theory of bit vectors (Section 5.4.3) because Vampire does not
support it.

5.4.1 Types and Constants
Let τ be a type and c1, . . . , cn (n ≥ 0) be constants of this type. If n > 0
then we introduce a sort τ , constants c1, . . . , cn of this sort, the domain
closure axiom of the form (∀x : τ)(x = c1 ∨ . . . ∨ x = cn) and the distinct
constants axiom of the form of a conjunction of literals ci 6= cj for all
1 ≤ i ≤ n, 1 ≤ j ≤ n and i 6= j. If n = 0 then we do not introduce
any sorts or constants and in our translation of predicate definitions
replace each subformula of the form (∀x : τ)ϕ with logical truth and each
subformula of the form (∃x : τ)ϕ with logical falsum.

For example, the signature contains the type dir and two constants
dir ingress and diregress of this type. dir represents the direction of a
network package. We translate this type to first-order logic as a sort dir ,
two constants ingress and egress of this sort and axioms (∀x : dir)(x =
ingress ∨ x = egress) and ingress 6= egress.

5.4.2 Predicate Definitions
Let predicate p of the type τ1 × . . . × τn be defined using k ≥ 0 rules.
Let x1 : τ1, . . . , xn : τn be fresh variables. If k = 0 then we translate the
definition of p to the axiom

(∀x1 : τ1) . . . (∀xn : τn)(¬p(x1, . . . , xn)).

If k > 0 then we translate the definition of p to the axiom

(∀x1 : τ1) . . . (∀xn : τn)(p(x1, . . . , xn)⇔ R1 ∨ . . . ∨Rk),

where each of the formulas R1, . . . , Rk are translations of each of the k
rules, respectively.
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Let a rule be of the form

p(t1, . . . , tn)← L1 ∧ . . . ∧ Lm, (m ≥ 0)

where t1 : τ1, . . . , tn : τn are terms. Let y1 : σ1, . . . , yl : σl be variables
that occur in either of L1, . . . , Lm but not in p(t1, . . . , tn). If m = 0 then
we translate the rule to the formula x1 = t1∧ . . .∧xn = tn. If m > 0 then
we translate the rule to the formula

x1 = t1 ∧ . . . ∧ xn = tn ∧ (∃y1 : σ1) . . . (∃yl : σl)(L1 ∧ . . . ∧ Lm).

For example, consider the following definition of the predicate link of
the type node × node that encodes the equivalence relation between two
nodes. The definition of link in not present in the network model, but it
is illustrative of our translation.

link(X,X).
link(X,Y )← link(Y,X).
link(X,Y )← link(X,Z) ∧ link(Z, Y ).

We translate the definition of link as a predicate symbol Link : node×
node and the axiom

(∀x : node)(∀y : node)
(Link(x, y)⇔ x = y ∨

Link(y, x) ∨
(∃z : node)(Link(x, z) ∧ Link(z, y))).

We translate the equality predicate =τ for each type τ to the standard
equality in first-order logic.

5.4.3 Theories
Our experiments with translating the theory of bit vectors revealed that
the quality of this translation crucially affects the performance of Vam-
pire. This led us to develop and compare multiple translations. In this
section we first describe translations of bit vectors that use other theories
supported by Vampire. Then, we describe a network model transforma-
tion that eliminates theories from network models by precomputing the
results of theory operations. Finally, we compare these translations.
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Translations to Other Theories

Recall that our network models use (i) the type bits16 and predicates
bits16≤ (“less or equal”), bits16≥ (“greater or equal”) and =bits16 , and
(ii) the type bits32 and predicates bits32∧ (bitwise conjunction) and
=bits32 . We translate 16-bit vectors to integers and 32-bit vectors to
arrays and tuples.

16-bit vectors to integers. We translate (i) the type bits16 to Z,
(ii) each of the 16-bit vector constants to an integer constant, and (iii) each
of the 16-bit predicates to their correspondent predicate symbol in the
theory of linear integer arithmetic. (iv) predicate =bits16 to the standard
equality.

32-bit vectors to arrays. We translate (i) the type bits32 to the
array sort array(Z, bool), (ii) each of the 32-bit vector constant to a fresh
constant v of this sort, defined using the axiom select(v, 1) = b1 ∧ . . . ∧
select(v, 32) = b32, where each of b1, . . . , b32 is either true or false, and
(iii) predicate bits32∧ to a predicate defined by the axiom of bitwise
conjunction for arrays of Booleans.

(∀x : array(Z, bool))(∀y : array(Z, bool))(∀z : array(Z, bool))
(bits32∧(x, y, z)⇔ (select(z, 1)⇔ select(x, 1) ∧ select(y, 1)) ∧

. . .

∧ (select(z, 32)⇔ select(x, 32) ∧ select(y, 32)))

(iv) predicate =bits32 to a predicate defined by the following axiom of
equality for 32-element arrays of Booleans.

(∀x : array(Z, bool))(∀y : array(Z, bool))
(=bits32 (x, y)⇔ select(x, 1) = select(y, 1) ∧

. . .

∧ select(x, 32) = select(y, 32))

32-bit vectors to tuples. We translate (i) the type bits32 to the tuple
sort (bool, . . . , bool) where bool is repeated 32 times, (ii) each of the 32-
bit vector constants to a term (b1, . . . , b32) of this sort, where each of
b1, . . . , b32 is either true or false, and (iii) predicate bits32∧ to a predicate
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defined by the following axiom of bitwise conjunction for Boolean tuples.

(∀x1 . . . x32 : bool)(∀y1 . . . y32 : bool)(∀z1 . . . z32 : bool)
(bits32∧((x1, . . . , x32), (y1, . . . , y32), (z1, . . . , z32))⇔

(z1 ⇔ x1 ∧ y1) ∧ . . . ∧ (z32 ⇔ x32 ∧ y32))

(iv) predicate =bits32 to the standard equality.

Precomputation of Theories

Our network models use 16-bit vectors to describe port numbers and
port ranges and 32-bit vectors to describe IPv4 addresses and subnet
masks. Bit vector predicates are only used in the definitions of predicates
for network primitives. For example, 16-bit vectors only occur in the
definitions of predicates that encode set-theoretic operations over port
ranges, such as portRangeOverlap mentioned in Section 5.2.2. Definitions
of higher level predicates only use these operations over port ranges and
never the bit vectors predicates.

We eliminate theory terms and literals from network models by rewrit-
ing the definitions of set-theoretic operations over network primitives with
results of precomputation of these operations for all primitives used in
the network. For example, we precompute the portRangeOverlap pred-
icate in the following way. First, we compute the set S of all pairs of
overlapping port ranges among the ones used in the network. This re-
quires a quadratic number of integer comparisons. Then, we use set S
to build a definition of portRangeOverlap that consists of facts of the
form portRangeOverlap(portRangeX , portRangeY ) where (X,Y ) ∈ S. We
optimise precomputation of some operations by considering their alge-
braic properties. For example, portRangeOverlap is a reflexive symmetric
binary relation and 0–65535 overlaps with any other port range. There-
fore, we avoid comparing each port range with itself, comparing two port
ranges twice and comparing 0–65535 with other port ranges. Instead, we
use the following rules in the definition of portRangeOverlap.

portRangeOverlap(Range,Range).
portRangeOverlap(R1,R2)← portRangeOverlap(R2,R1).
portRangeOverlap(portRange0–65535,Range).

(5.3)

Consider a network that only uses port ranges 0–65535, 22–22, 443–
443, 5432–5432, 80–80 and 80–81 in any of the configurations of its
components. We found that it is not uncommon for our networks to
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Table 5.2. Runtimes in seconds of Vampire on the network verification
problems translated using different methods.

Translation Number of network nodes
1 2 3 4 5

Arrays 0.67 2.52 7.86 43.19 –
Tuples 0.44 1.34 2.92 5.79 8.81
Precomputation 0.23 0.38 1.06 1.82 3.70

Translation Number of network nodes
6 7 8 9 10

Arrays – – – – –
Tuples 17.28 – 27.29 – –
Precomputation 6.61 10.90 7.12 14.57 37.11

use trivial port ranges that span one port number. The definition of
portRangeOverlap precomputed for this network consists of 12 facts or
the rule portRangeOverlap(portRange80–80, portRange80–81) together with
the rules (5.3).

The precomputation of theories is the only applicable strategy for
translating network models for Vampire’s finite model builder, because it
only supports plain many-sorted first-order logic without theories.

Comparison of Translations

To compare the translation methods, we used each of them to encode
10 network verification problems in first-order logic and run Vampire in
the saturation mode on the resulting formulas. Our verification problems
express the property (5.1) of 10 VPC network configurations. These
network configurations are variations of the example on Figure 5.1 with
different number of network nodes in each of the subnets “Web” and
“Database” (from 1 to 10).

Table 5.2 presents the runtimes of Vampire on each of the problems.
Dashes indicate the absence of a solution within the given time limit of 1
minute. These results were obtained on a MacBook Pro with a 2,9 GHz
Intel Core i5 and 8 Gb RAM.

The results of this experiment show that on this collection of verifi-
cation problems formulas produced by the translation of 32-bit vectors
to tuples are easier for Vampire than formulas produced by the transla-
tion to arrays. We explain it by the fact that the former end up using
a more compact representation of bit vectors in first-order logic. The
translation to tuples models a 32-bit vector as a single term, while the
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translation to arrays models it as conjunction of 32 literals. Furthermore,
the translation to tuples uses the standard equality that Vampire supports
efficiently, while the translation to arrays uses a heavy equality axiom for
32-element arrays. The compact representation of bit vectors as tuples
allows Vampire infer bitwise conjunctions faster.

We observe that formulas produced by the translation with precom-
puted theories are easier for Vampire than formulas produced by any of
the translations of bit vectors to other theories. We explain it by the fact
that the bulky axioms for bitwise conjunction and equality slow down the
proof search, whereas these operations are easy to precompute. Although
the precomputation of a theory operation has polynomial complexity, we
found that for the networks we used in this study it does not significantly
slow down answering network questions. Realistic VPC networks only
use a small number of distinct network primitives such as port numbers
and IP addresses in any of the configurations of its components and the
precomputation for them is not heavy. Furthermore, the precomputation
of each theory operation usually involves a simple operation over machine
integers that can be performed quickly.

5.5 Related Work
Network verification is an attractive target for automated reasoning tools,
some of which we mentioned earlier in Section 5.1. In this section we
focus on approaches to network verification that are most similar to this
work and applications of finite model building and saturation theorem
proving to similar problems.

Network analysis based on the modelling of network components and
protocols in first-order logic has been described in [46, 39]. Compared to
our work, these works rely on finite saturation in the Spass theorem prover
to build models, and not on finite model builders. Another significant
difference is the encoding of port numbers and IP addresses in network
models. The approach taken in [46, 39] represents port numbers as
uninterpreted constants and IP addresses as 32-bit vectors modelled as
a 32-ary function symbols with a special term simplification ordering
added to Spass. This approach limit scalability of network analysis, e.g.
complex routing rules involving many port intervals result in bulky first-
order formulas. In contrast, our work offers a more efficient representation
of port numbers and IP addresses.

Bjørner et al. [16] checked properties of ACLs, routing tables and
Border Gateway Protocol policies in Microsoft Azure networks using SMT
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solver Z3 [27]. To that end [16] implemented a translation of network
properties to quantifier-free logical formulas over bit vectors that is aware
of the semantics of network components. In comparison, our translation
encodes the complete semantics of a VPC network in the quantified
problem solved by saturation-based theorem prover and finite model
builders. We argue that our approach is more flexible at the expense
of having to deal with more difficult problems.

Weidenbach [98] verified security properties of the Neuman-Stubblebine
key exchange protocol by expressing them as sets of monadic Horn clauses.
Similarly to our work, [98] expressed reachability as unsatisfiability in
first-order logic and used a saturation-based theorem prover to construct
proofs of reachability. Conversely, [98] discovered unreachability by finite
saturation in Spass. Goubault-Larrecq [34] used finite model building to
check unreachability in the context of verification of security protocols.

5.6 Challenges and Future Work
This paper presents a work in progress and some of the challenges that we
faced are yet to be overcome. We discuss these challenges in this section
and suggest directions for future work. We believe that similar challenges
are experienced in other practical applications of automated reasoning in
first-order logic.

Good translation to first-order logic. Automated theorem provers
for first-order logic are known to be sensitive to the encoding of the
problem they are solving. To ensure efficient representation of practical
problems in a theorem prover, these problems should be encoded using
theories and syntactical constructs beyond plain first-order logic. Yet
not all automated theorem provers efficiently implement these features.
While the Vampire theorem prover used in this work supports many useful
theories, we miss a support for the theory of bit vectors. The need to
work around this limitation hinders a good translation of our network
model to first-order logic.

Configuration of theorem provers. Automated theorem provers typ-
ically offer many settings for configuring proof search. For example, Vam-
pire has dozens of options [71] that describe a colossal number of possible
proof strategies. There is no proof strategy that would be the best for all
kinds of problems, and we found that changing the default options of Vam-
pire might result in a strategy that works better on our problems than the
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default strategy. At the same time, hand-picking good options is tedious
and unintuitive, and there is no way of knowing if a hand-picked strategy
will work well on all of our problems. Many modern automated theorem
provers rely not on one single strategy, but on a portfolio of strategies,
which they try one by one during proof search. Theorem provers typically
implement portfolios for existing large collections of problems such as
TPTP [83] and SMT-LIB [10]. To our knowledge, there is no system-
atic way of assembling a custom portfolio tailored to a specific class of
problems.

Finite domains. Our formalisation of VPC networks uses large finite
domains to describe the topology of a network and the semantics of its
components. While finite domains is good news for finite model builders,
saturation-based theorem provers are known to have hard time reasoning
with them. Domain closure axioms (∀x : τ)(x = c1 ∨ . . . ∨ x = cn) for
large values of n result in long clauses that degrade performance of the
prover. A technique for efficient superposition theorem proving with these
axioms is discussed e.g. in [38], but this technique is not implemented in
any modern theorem prover.

EPR. We translate network models to problems that almost fit into the
effectively propositional (EPR) fragment of first-order logic, also called the
Bernays-Schönfinkel class. These problems do not use function symbols
with positive arity, but Skolem functions with positive arity might be
introduced during clausification. The satisfiability problem for EPR is
decidable and there exist efficient tools that deal with this fragment [50].
It is possible to translate our network models to problems in EPR, for
example by grounding the existentially-quantified variables. The obvious
drawback of this translation is the blowup of the size of the resulting
problem. Whether this blowup is mitigated by the efficiency of EPR
solvers is an interesting question for future work.

Solver-agnostic network models. The work presented in this paper
contributes to our ultimate goal of checking network properties with
diverse complementary constraint solvers. In order to successfully use
different kinds of constraint solvers we need a formalisation of networks
that can be equally efficiently translated to different kinds of constraint
satisfaction problems. We find that our current formalisation, written in
the logic programming style, is friendly for systems like Datalog [35], but
not necessarily for theorem provers for first-order logic. For example, some
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of the predicates in the specification can be more naturally expressed as
functions in full first-order logic rather than translated from their encoding
as Horn clauses. Ultimately this bias hinders efficient representation
of the problem in first-order logic. Designing a more solver-agnostic
formalisation of networks is an important direction of future work.

Evaluation. In this work we used a small collection of network configu-
rations that we verified using Vampire run as a saturation-based theorem
prover. We leave for future work experiments with (i) other theorem
provers for first-order logic, (ii) other kinds of constraint solvers, (iii) dif-
ferent encodings of network problems as constraint satisfaction problems,
and (iv) large collections of real world network configurations.
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Chapter 6

TFX: The TPTP Extended Typed
First-Order Form

Geoff Sutcliffe and Evgenii Kotelnikov

Abstract. The TPTP world is a well established infrastructure that
supports research, development, and deployment of Automated Theorem
Proving systems for classical logics. The TPTP language is one of the keys
to the success of the TPTP world. Originally the TPTP world supported
only first-order clause normal form (CNF). Over the years support for
full first-order form (FOF), monomorphic typed first-order form (TF0),
rank-1 polymorphic typed first-order form (TF1), monomorphic typed
higher-order form (TH0), and rank-1 polymorphic typed higher-order
form (TH1), have been added. TF0 and TF1 together form the TFF
language family; TH0 and TH1 together form the THF language family.
This paper introduces the eXtended Typed First-order form (TFX), which
extends TFF to include Boolean terms, tuples, conditional expressions,
and let expressions.

Published in the Proceedings of the 6th Workshop on Practical Aspects of
Automated Reasoning, pages 72–87. CEUR Workshop Proceedings, 2018.
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6.1 Introduction
The TPTP world [85] is a well established infrastructure that supports
research, development, and deployment of Automated Theorem Proving
(ATP) systems for classical logics. The TPTP world includes the TPTP
problem library, the TSTP solution library, standards for writing ATP
problems and reporting ATP solutions, tools and services for processing
ATP problems and solutions, and it supports the CADE ATP System
Competition (CASC). Various parts of the TPTP world have been de-
ployed in a range of applications, in both academia and industry. The
web page http://www.tptp.org provides access to all components.

The TPTP language is one of the keys to the success of the TPTP
world. The language is used for writing both TPTP problems and TSTP
solutions, which enables convenient communication between different sys-
tems and researchers. Originally the TPTP world supported only first-
order clause normal form (CNF) [91]. Over the years support for full
first-order form (FOF) [84], monomorphic typed first-order form (TF0)
[90], rank-1 polymorphic typed first-order form (TF1) [18], monomor-
phic typed higher-order form (TH0) [88], and rank-1 polymorphic typed
higher-order form (TH1) [45], have been added. TF0 and TF1 together
form the TFF language family; TH0 and TH1 together form the THF
language family. See [87] for a recent review of the TPTP.

Since the inception of TFF there have been some features that have
received little use, and hence little attention. In particular, tuples, con-
ditional expressions (if-then-else), and let expressions (let-in) were
neglected, and the latter two were horribly formulated with variants to
distinguish between their use as formulae and terms. Recently, conditional
expressions and let expressions have become more important because of
their use in software verification applications. In an independent devel-
opment, Evgenii Kotelnikov et al. introduced FOOL [53], a variant of
many-sorted first-order logic (FOL). FOOL extends FOL in that it (i) con-
tains an interpreted Boolean type, which allows Boolean variables to be
used as formulae, and allows all formulae to be used as Boolean terms,
(ii) contains conditional expressions, and (iii) contains let expressions.
FOOL can be straightforwardly extended with the polymorphic theory
of tuples that defines first class tuple types and terms [54]. Features of
FOOL can be used to concisely express problems coming from program
analysis [54] or translated from more expressive logics. The conditional
expressions and let expressions of FOOL resemble those of the SMT-LIB
language version 2 [10].
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The TPTP’s new eXtended Typed First-order form (TFX) language
remedies the old weaknesses of TFF, and incorporates the features of
FOOL. This has been achieved by conflating (with some exceptions)
formulae and terms, removing tuples from plain TFF, including fully
expressive tuples in TFX, removing the old conditional expressions and
let expressions from TFF, and including new elegant forms of conditional
expressions and let expressions as part of TFX. (These more elegant
forms have been mirrored in THF, but that is not a topic of this paper.)
TFX is a superset of the revised TFF language. This paper describes
the extensions to the TFF language form that define the TFX language.
The remainder of this paper is organised as follows: Section 6.2 reviews
the TFF language, and describes FOOL. Section 6.3 provides technical
and syntax details of the new features of TFX. Section 6.4 describes the
evolving software support for TFX, and provides some examples that
illustrate its use. Section 6.5 concludes.

6.2 The TFF Language and FOOL
The TPTP language is a human-readable, easily machine-parsable, flex-
ible and extensible language, suitable for writing both ATP problems
and solutions. The top level building blocks of the TPTP language are
annotated formulae. An annotated formula has the form

language(name, role, formula, [source, [useful_info]]).

The languages supported are clause normal form (cnf ), first-order form
(fof ), typed first-order form (tff ), and typed higher-order form (thf ).
The role, e.g., axiom , lemma , conjecture , defines the use of the for-
mula in an ATP system. In the formula, terms and atoms follow Prolog
conventions, i.e., functions and predicates start with a lowercase letter
or are ’single quoted’, variables start with an uppercase letter, and all
contain only alphanumeric characters and underscore. The TPTP lan-
guage also supports interpreted symbols, which either start with a $ ,
or are composed of non-alphanumeric characters, e.g., the truth con-
stants $true and $false , and integer/rational/real numbers such as
27 , 43/92 , -99.66 . The basic logical connectives are ! , ? , ∼ , | , & ,
=> , <= , <=> , and <∼> , for ∀, ∃, ¬, ∨, ∧, ⇒, ⇐, ⇔, and ⊕ respectively.
Equality and inequality are expressed as the infix operators = and != .
The following is an example of an annotated first-order formula, supplied
from a file.
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fof(union, axiom,
![X, A, B]: (member(X, union(A, B)) <=>
(member(X, A) | member(X, B))),

file(’SET006+0.ax’, union),
[description(’Definition of union’), relevance(0.9)]).

6.2.1 The Typed First-Order Form TFF
TFF extends the basic FOF language with types and type declarations.
The TF0 variant is monomorphic, and the TF1 variant is rank-1 poly-
morphic. Every function and predicate symbol is declared before its use,
with a type signature that specifies the types of the symbol’s arguments
and result. Each TF0 type is one of

• the predefined types $i for ι (individuals) and $o for o (Booleans);

• the predefined arithmetic types $int (integers), $rat (rationals),
and $real (reals); or

• user-defined types (constants).

User-defined types are declared before their use to be of the kind
$tType , in annotated formulae with the type role — see Figure 6.1 for
examples. Each TF0 type signature declares either

• an individual type τ ; or

• a function type (τ1 * · · · * τn) > τ̃ for n > 0, where τi are the
argument types, and τ̃ is the result type.

The type signatures of uninterpreted symbols are declared like types,
in annotated formulae with the type role — see Figure 6.1 for examples.
The type of = and != is ad hoc polymorphic over all types except $o
(this restriction is lifted in TFX), with both arguments having the same
type and the result type being $o . The types of arithmetic predicates
and functions are ad hoc polymorphic over the arithmetic types; see [90]
for details. Figure 6.1 illustrates some TF0 formulae, whose conjecture
can be proved from the axioms (it is the TPTP problem PUZ130_1.p).

The polymorphic TF1 extends TF0 with (user-defined) type construc-
tors, type variables, polymorphic symbols, and one new binder. Each TF1
type is one of

• the predefined types $i and $o ;
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tff(animal_type, type, animal: $tType).
tff(cat_type, type, cat: $tType).
tff(dog_type, type, dog: $tType).
tff(human_type, type, human: $tType).
tff(cat_to_animal_type, type, cat_to_animal: cat > animal).
tff(dog_to_animal_type, type, dog_to_animal: dog > animal).
tff(garfield_type, type, garfield: cat).
tff(odie_type, type, odie: dog).
tff(jon_type, type, jon: human).
tff(owner_of_type, type, owner_of: animal > human).
tff(chased_type, type, chased: (dog * cat) > $o).
tff(hates_type, type, hates: (human * human) > $o).

tff(human_owner, axiom,
![A: animal]: ?[H: human]: H = owner_of(A)).

tff(jon_owns_garfield, axiom,
jon = owner_of(cat_to_animal(garfield))).

tff(jon_owns_odie, axiom,
jon = owner_of(dog_to_animal(odie))).

tff(jon_owns_only, axiom,
![A: animal]:
(jon = owner_of(A)

=> (A = cat_to_animal(garfield)
| A = dog_to_animal(odie)))).

tff(dog_chase_cat, axiom,
![C: cat, D: dog]:
(chased(D, C)

=> hates(owner_of(cat_to_animal(C)),
owner_of(dog_to_animal(D))))).

tff(odie_chased_garfield, axiom, chased(odie, garfield)).

tff(jon_hates_jon, conjecture, hates(jon, jon)).

Figure 6.1. TF0 Formulae.
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• the predefined arithmetic types $int , $rat , and $real ;

• user-defined n-ary type constructors applied to n type arguments;
or

• type variables, which must be quantified by !> — see the type
signature forms below.

Type constructors are declared before their use to be of the kind
($tType * · · · * $tType) > $tType, in annotated formulae with a type
role. Each TF1 type signature declares either

• an individual type τ ;

• a function type (τ1 * · · · * τn) > τ̃ for n > 0, where τi are the
argument types and τ̃ is the result type (with the same caveats as
for TF0); or

• a polymorphic type !>[α1: $tType, . . . ,αn: $tType]: ς for n > 0,
where α1, . . . , αn are distinct type variables and ς is a TF0 type
signature.

The !> binder in the last form denotes universal quantification in the
style of λΠ calculi. It is used only at the top level in polymorphic type
signatures. All type variables must be of kind $tType ; more complex
type variables are beyond rank-1 polymorphism. An example of TF1
formulae can be found in [45].

6.2.2 FOOL
FOOL [53], standing for First-Order Logic (FOL) + bOoleans, is a variant
of many-sorted first-order logic. FOOL extends FOL in that it (i) contains
an interpreted Boolean type, which allows Boolean variables to be used as
formulae, and allows all formulae to be used as Boolean terms, (ii) contains
conditional expressions, and (iii) contains let expressions. FOOL can
be straightforwardly extended with the polymorphic theory of tuples
that defines first class tuple types and terms [54]. In what follows we
consider such extension, and tuples are part of TFX. There is a model-
preserving transformation of FOOL formulae to FOL formulae [53] that
can be implemented in a FOL ATP system to support reasoning with
FOOL. Formulae of FOOL can also be efficiently translated to a first-
order clausal normal form [52]. The following describes these features of
FOOL, illustrating them using examples taken from [51] and [54]. The
complete formal semantics of FOOL is given in [53].
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Boolean Terms and Formulae

FOOL contains an interpreted two-element Boolean type bool, allows
quantification over variables of type bool, and considers formulae to be
terms of type bool. This allows Boolean variables to be used as formulae,
and all formulae to be used as Boolean terms. For example, Formula 6.1
is a syntactically correct tautology in FOOL.

(∀x : bool)(x ∨ ¬x) (6.1)

Logical implication can be defined as a binary function imply of the type
bool × bool → bool using the axiom

(∀x : bool)(∀y : bool)(imply(x, y)⇔ ¬x ∨ y). (6.2)

Then it is possible to express that P is a graph of a (partial) function of
the type σ → τ as

(∀x : σ)(∀y : τ)(∀z : τ)imply(P (x, y) ∧ P (x, z), y .= z) (6.3)

Formula 6.2 can be equivalently expressed with .= instead of ⇔.

Tuples

FOOL extended with the theory of tuples contains a type (σ1, . . . , σn) of
the n-ary tuple for all types σ1, . . . , σn, n > 0. Each type (σ1, . . . , σn) is
first class, that is, it can be used in the type of a function or predicate sym-
bol, and in a quantifier. An expression (t1, . . . , tn), where t1, . . . , tn are
terms of types σ1, . . . , σn, respectively, is a tuple term of type (σ1, . . . , σn).
Each tuple term is first class and can be used as an argument to a function
symbol, a predicate symbol, or equality.

Tuples are ubiquitous in mathematics and programming languages.
For example, one can use the tuple sort (R,R) as the sort of complex
numbers. Thus the term (2, 3) represents the complex number 2 + 3i. A
function symbol plus that represents addition of complex numbers has
the type (R,R)× (R,R)→ (R,R).

Conditional Expressions

FOOL contains conditional expressions of the form if ψ then s else t,
where ψ is a formula, and s and t are terms of the same type. The seman-
tics of such expressions mirrors the semantics of conditional expressions
in programming languages, and they are therefore convenient for express-
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ing formulae coming from program analysis. For example, consider the
max function of the type Z × Z → Z that returns the maximum of its
arguments. Its definition can be expressed in FOOL as

(∀x : Z)(∀y : Z)(max(x, y) .= if x ≥ y then x else y). (6.4)

FOOL allows conditional expressions to occur as formulae, as in the
following valid property of max.

(∀x : Z)(∀y : Z)(if max(x, y) .= x then x ≥ y else y ≥ x) (6.5)

Let Expressions

FOOL contains let expressions of the form let D1; . . . ;Dk in t, where
k > 0, t is either a term or a formula, and D1, . . . , Dk are simultaneous
non-recursive definitions. FOOL allows definitions of function symbols,
predicate symbols, and tuples.

The definition of a function symbol f : σ1× . . .×σn → τ has the form
f(x1 : σ1, . . . , xn : σn) = s, where n ≥ 0, x1, . . . , xn are distinct variables,
and s is a term of the type τ . For example, the following let expression
denotes the maximum of three integer constants a, b, and c, using a local
definition of the function symbol max.

let max(x : Z, y : Z) = if x ≥ y then x else y

in max(max(a, b), c)
(6.6)

The definition of a predicate symbol p : σ1 × . . . × σn has the form
p(x1 : σ1, . . . , xn : σn) = ϕ, where n ≥ 0, x1, . . . , xn are distinct variables,
and ϕ is a formula. For example, the following let expression denotes
equivalence of two Boolean constants A and B, using a local definition of
the predicate symbol imply.

let imply(x : bool, y : bool) = ¬x ∨ y
in imply(A,B) ∧ imply(B,A)

(6.7)

The definition of a tuple has the form (c1, . . . , cn) = s, where n > 1,
c1, . . . , cn are distinct constant symbols of the types σ1, . . . , σn, respec-
tively, and s is a term of the type (σ1, . . . , σn). For example, the following
formula defines addition for complex numbers using two simultaneous lo-
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cal definition of tuples.

(∀x : (R,R))(∀y : (R,R))
(plus(x, y) .= let (a, b) = x; (c, d) = y in (a+ c, b+ d))

(6.8)

The semantics of let expressions in FOOL mirrors the semantics of
simultaneous non-recursive local definitions in programming languages.
That is, none of the definitions D1, . . . , Dn uses function or predicate
symbols created by any other definition. In the following example, con-
stants a and b are swapped by a let expression. The resulting formula is
equivalent to P (b, a).

let a = b ; b = a in P (a, b) (6.9)

Formula 6.9 can be equivalently expressed using the following let
expression with a definition of a tuple.

let (a, b) = (b, a) in P (a, b) (6.10)

Let expressions with tuple definitions are convenient for expressing
problems coming from program analysis, namely modelling of assignments
[54]. The left hand side of Figure 6.2 shows an example of an imperative
if statement containing assignments to integer variables, and an assert
statement. This can be encoded in FOOL as shown on the right hand
side, using let expressions with definitions of tuples that capture the
assignments.

if (x > y) {
t := x;
x := y;
y := t;

}
assert(x <= y);

let (x, y, t) = if x > y then
let t = x in

let x = y in
let y = t in

(x, y, t)
else (x, y, t)

in x ≤ y

Figure 6.2. FOOL encoding of an if statement.
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6.3 The TFX Syntax
The TPTP TFF syntax has been extended to provide the features of
FOOL, and at the same time some of the previous weaknesses have been
remedied. Formulae and terms have been conflated (with some excep-
tions). Tuples have been removed from TFF, and fully expressive tuples
included in TFX. The old conditional expressions and let expressions
have been removed from TFF, and new elegant forms have been included
as part of TFX. The grammar of TFX is captured in version v7.1.0.2
of the TPTP syntax, available online at http://www.tptp.org/TPTP/
SyntaxBNF.html. In the subsections below, the relevant excerpts of the
BNF are provided, with examples and commentary.

6.3.1 Boolean Terms and Formulae
Variables of type $o can be used as formulae, and formulae can be used as
terms. The following is the relevant BNF excerpt. Formulae are terms are
conflated by including logic/atomic formulae as options for terms/unitary
terms. The distinction between formulae and terms is maintained for
plain TFF.

<tff_logic_formula> ::=
<tff_unitary_formula> | <tff_unary_formula>

| <tff_binary_formula> | <tff_defined_infix>
<tff_unitary_formula> ::=

<tff_quantified_formula> | <tff_atomic_formula>
| <tfx_unitary_formula> | (<tff_logic_formula>)

<tfx_unitary_formula> ::= <variable>
<tff_term> ::=

<tff_logic_formula> | <defined_term> | <tfx_tuple>
<tff_unitary_term> ::=

<tff_atomic_formula> | <defined_term> | <tfx_tuple>
| <variable> | (<tff_logic_formula>)

The FOOL tautology on Formula 6.1 can be written in TFX as

tff(tautology, conjecture, ![X: $o]: (X | ∼X)).

The imply predicate in Formula 6.2 can be written in TFX as

tff(imply_type, type, imply: ($o * $o) > $o).
tff(imply_defn, axiom,

![X: $o, Y: $o]: (imply(X, Y) <=> (∼X | Y))).
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The definition of a graph of a function on Formula 6.3 can be written
in TFX as
tff(s, type, s: $tType).
tff(t, type, t: $tType).
tff(p, type, p: (s * t) > $o).
tff(graph, axiom,

![X: s, Y: t, Z: s]: imply(p(X, Y) & p(X, Z), Y = Z)).

A consequence of allowing formulae as terms is that the default typing
of functions and predicates supported in plain TFF (functions default to
($i * ...* $i) > $i and predicates default to ($i * ...* $i) > $o)
is not supported in TFX.

Note that not all terms can be used as formulae. Tuples, numbers,
and “distinct objects” cannot be used as formulae.

6.3.2 Tuples
Tuples in TFX are written in [] brackets, and can contain any type of
term, including formulae and variables of type $o . Signatures can contain
tuple types. The following is the relevant BNF excerpt.
<tfx_tuple_type> ::= [<tff_type_list>]
<tff_type_list> ::=

<tff_top_level_type>
| <tff_top_level_type>,<tff_type_list>

<tfx_tuple> ::= [] | [<tff_arguments>]
<tff_arguments> ::= <tff_term> | <tff_term>,<tff_arguments>

The tuple type (R,R) can be written in TFX as [$real, $real] and
the type of the addition function for complex numbers (R,R)× (R,R)→
(R,R) can be written as

([$real, $real] * [$real, $real]) > [$real, $real] .

The tuple term (2, 3) can be written as [2,3] . Tuples can occur only as
terms, anywhere they are well-typed (i.e., they cannot appear as formulae).
In the following example the predicate p takes a tuple (Z, ι, o) as the
first argument.
tff(p_type, type, p: ([$int, $i, $o] * $o * $int) > $o).
tff(q_type, type, q: ($int * $i) > $o).
tff(me_type, type, me: $i).
tff(tuples_1, axiom,

![X: $int]: p([33, me, $true], ![Y: $i]: q(X, Y), 27)).
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Note that while product types and tuple types are semantically equiva-
lent, two separate syntaxes are used to make it easy to distinguish between
the following cases.

tff(n_type, type, n: [$int, $int]).
tff(f_type, type, f: [$int, $int] > $int).
tff(g_type, type, g: ($int * $int) > $int).
tff(h_type, type, h: ([$int, $int] * $int) > $int).

The first case defines n to be a tuple of two integers. The second
case defines f to be a function from a tuple of two integers to an integer.
The third case defines g to be a function from two integers to an integer.
The last case defines h to be a function from a tuple of two integers and
an integer, to an integer.

The tuples syntax cannot be used to simultaneously declare types
of multiple constants in an annotated formula with the type role. For
example, the following expression is not valid.

tff(ab_type, type, [a, b]: [$int, $int]).

Instead, one must declare the type of each constant separately.

tff(a_type, type, a: $int).
tff(b_type, type, b: $int).

6.3.3 Conditional Expressions
Conditional expressions are polymorphic, taking a formula as the first
argument, then two formulae or terms of the same type as the second and
third arguments. The type of the conditional expression is the type of its
second and third arguments. The following is the relevant BNF excerpt.

<tfx_conditional> ::= $ite(<tff_logic_formula>,
<tff_term>,<tff_term>)

The keyword $ite is used for conditional expressions occurring both
as terms and formulae, which is different from the old TFF syntax of if-
then-else that contained two separate keywords $ite_t and $ite_f .

The definition and a property of the max function on Formulae 6.4
and 6.5 can be expressed in TFX as

tff(max_type, type, max: ($int * $int) > $int).
tff(max_defn, axiom,

![X: $int, Y: $int]:
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max(X, Y) = $ite($greatereq(X, Y), X, Y)).
tff(max_property, conjecture,

![X: $int, Y: $int]:
$ite(max(X, Y) = X, $greatereq(X, Y),

$greatereq(Y, X))).

6.3.4 Let Expressions
Let expressions in TFX contain (i) the type signatures of locally defined
symbols; (ii) the definitions of the symbols; and (iii) the term or formula
in which the definitions are used. Type signatures in let expressions
syntactically match those in annotated formulae with the type role. The
symbol definitions determine how locally defined symbols are expanded
in the term or formulae where they are used. The type signature must
include the types for all the local defined symbols. The following is the
relevant BNF excerpt.

<tfx_let> ::=
$let(<tfx_let_types>,<tfx_let_defns>,<tff_term>)

<tfx_let_types> ::=
<tff_atom_typing> | [<tff_atom_typing_list>]

<tff_atom_typing_list> ::=
<tff_atom_typing>

| <tff_atom_typing>,<tff_atom_typing_list>
<tfx_let_defns> ::= <tfx_let_defn> | [<tfx_let_defn_list>]
<tfx_let_defn> ::= <tfx_let_LHS> <assignment> <tff_term>
<tfx_let_LHS> ::= <tff_plain_atomic> | <tfx_tuple>
<tfx_let_defn_list> ::=

<tfx_let_defn>
| <tfx_let_defn>,<tfx_let_defn_list>

The keyword $let is used for let expressions defining both function
and predicate symbols, regardless of whether the let expression occurs
as a term or a formula. This is different from the old TFF syntax of let
expressions that contained four separate keywords $let_tt , $let_tf ,
$let_ft , and $let_ff .

In the following example an integer constant c is defined in a let
expression.

tff(p_type, type, p: ($int * $int) > $o).
tff(let_1, axiom, $let(c: $int, c:= $sum(2, 3), p(c, c))).
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The left hand side of a definition may contain pairwise distinct vari-
ables as top-level arguments, which can also appear in the right hand
side of the definition. Such variables are implicitly universally quantified,
and of the type defined by the symbol’s type declaration. The variables’
values are supplied by unification in the defined symbol’s use. Figures 6.3
and 6.4 show examples of let expressions with definitions of function and
predicate symbols.

tff(max_max, axiom,
$let(max: ($real * $real) > $real,

max(X, Y) := $ite($greatereq(X, Y), X, Y),
max(max(a, b), c))).

Figure 6.3. TFX encoding of Formula 6.6.

tff(a, type, a: $o).
tff(b, type, b: $o).
tff(a_eq_b, axiom,

$let(imply: ($o * $o) > $o,
imply(X, Y) := ∼X | Y,
imply(a, b) & imply(b, a))).

Figure 6.4. TFX encoding of Formula 6.7.

Let expression can use definitions of tuples. Formula 6.8 can be written
in TFX as follows. Notice that the type declaration contains the elements
of both tuples in the simultaneous definition.

tff(plus, type,
plus: ([$real,$real] * [$real,$real]) > [$real,$real]).

tff(plus_def, axiom,
![X: [$real, $real], Y: [$real$, $real]]:
(plus(X, Y)
= $let([a: $real, b: $real, c: $real, d: $real],

[[a, b] := X, [c, d] := Y],
[$sum(a, c), $sum(b, d)])).

Sequential let expressions (let*) can be implemented by nesting. In
the following example ff and gg are defined in sequence, and the let
expression is equivalent to the formula p(f(i,i,i,i)) .

tff(i_type, type, i: $int).
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tff(f_type, type, f: ($int * $int * $int * $int) > $int).
tff(p_type, type, p: $int > $o).
tff(let_tuple_3, axiom,

$let(ff: ($int * $int) > $int,
ff(X, Y):= f(X, X, Y, Y),
$let(gg: $int > $int,

gg(Z) := ff(Z, Z),
p(gg(i))))).

Let expressions can have simultaneous local definitions with the type
declarations and the definitions given in []es (they look like tuples of
declarations and definitions, but are specified independently of tuples
in the syntax). (Lisp-like programming languages call them let, and
not let* — let* can be implemented in TFX by nesting lets). The
symbols must have distinct signatures. Figure 6.5 shows two equivalent let
expressions, one with a tuple definition, the other with two simultaneous
definitions of constants.

tff(a, type, a: $i).
tff(b, type, b: $i).
tff(p, type, p: ($i*$i)>$o).
tff(pba, axiom,

$let([a: $i, b: $i],
[a := b, b := a],
p(a, b))).

tff(a, type, a: $i).
tff(b, type, b: $i).
tff(p, type, p: ($i*$i)>$o).
tff(pba, axiom,

$let([a: $i, b: $i],
[a, b] := [b, a],
p(a, b))).

Figure 6.5. TFX encodings of Formulas 6.9 (left) and 6.10 (right).

In the following example two function symbols are defined simultane-
ously, and the let expression is equivalent to the formula

p(f(i,i,f(i,i,i,i),f(i,i,i,i))) .

tff(i_type, type, i: $int).
tff(f_type, type, f: ($int * $int * $int * $int) > $int).
tff(p_type, type, p: $int > $o).
tff(let_tuple_2, axiom,

$let([ff: ($int * $int) > $int, gg: $int > $int],
[ff(X, Y) := f(X,X,Y,Y), gg(Z) := f(Z,Z,Z,Z)],
p(ff(i, gg(i))))).

The defined symbols of a let expression have scope over the formu-
la/term in which the definitions are applied, shadowing any definition
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outside the let expression. The right hand side of a definition can have
symbols with the same name as the defined symbol, but refer to symbols
defined outside the let expression. In the following example the local
definition of the array function symbols shadow the global declaration.

tff(array_type, type, array: $int > $real).
tff(p_type, type, p: $real > $o).
tff(let_3, axiom,

$let(array: $int > $real,
array(I) := $ite(I = 3, 5.2, array(I)),
p($sum(array(2), array(3))))).

6.4 Software Support and Examples

6.4.1 Software for TFX
The BNF provides the automatically generated lex/yacc parsers for TPTP
files. At the time of writing this paper, the TPTP4X utility is being
upgraded to support TFX.

The Vampire theorem prover [57] supports all features of FOOL. Vam-
pire transforms FOOL formulae into a set of first-order clauses using the
VCNF algorithm [52], and then reasons with these clauses using its usual
resolution calculi for first-order logic. At the time of writing this paper
the latest released version of Vampire, 4.2.2, uses a syntax for FOOL
that slightly differs from TFX. Full support for the TFX syntax has been
implemented in a recent revision of the Vampire source code1, and will
be available in the next release of Vampire.

TFX has been used by two program verification tools BLT [23] and
Voogie [54]. Both BLT and Voogie read programs written in a subset of
the Boogie intermediate verification language and generate their partial
correctness properties written in the TFX syntax. BLT and Voogie gen-
erate formulae differently, but both rely on features of FOOL, namely
conditional expressions, let expressions, and tuples.

6.4.2 Examples
Figures 6.6–6.8 show longer examples of useful applications of features
of FOOL. Figure 6.6 shows how tuples, conditional expressions, and let
expressions can be mixed, here to place two integer values in descending
order as arguments in an atom. Figure 6.7 shows the TFX encoding of

1https://github.com/vprover/vampire
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the FOOL formula in Figure 6.2, which expresses a partial correctness
property of an imperative program with an if statement. Figure 6.8
shows an example that uses formulae as terms, in the second arguments
of the says predicate. The problem is to find a model from which it is
possible to determine which of a , b , or c is the only truthteller on this
Smullyanesque island [81]. More TFX examples are available from the
TPTP web site http://www.tptp.org/TPTP/Proposals/TFXExamples.
tgz.

tff(v1_type, type, v1: $int).
tff(v2_type, type, v2: $int).
tff(ordered_p, axiom,

$let([large: $int,small: $int],
[large, small] := $ite($greater(v1,v2),

[v1, v2], [v2, v1]),
p(large, small))).

Figure 6.6. Mixing tuples, conditional and let expressions.

tff(x, type, x: $int).
tff(y, type, y: $int).
tff(t, type, t: $int).
tff(x_leq_y, conjecture,

$let([x: $int, y: $int, t: $int],
[x, y, t] := $ite($greater(x,y),

$let(t: $int, t := x,
$let(x: $int, x := y,
$let(y: $int, y := t,

[x, y, t]))),
[x, y, t]),

$lesseq(x, y))).

Figure 6.7. A TFX encoding of the program analysis problem in Fig-
ure 6.2.

6.5 Conclusion
This paper has introduced the eXtended Typed First-order form (TFX) of
the TPTP’s TFF language. TFX includes Boolean variables as formulae,
formulae as terms, tuple types and terms, conditional expressions, and
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tff(a_type, type, a: $i).
tff(b_type, type, b: $i).
tff(c_type, type, c: $i).
tff(exactly_one_truthteller_type, type,

exactly_one_truthteller: $o).
tff(says, type, says: ($i * $o) > $o).

% Each person is either a truthteller or a liar
tff(island, axiom,

![P: $i]: (says(P, $true) <∼> says(P, $false))).
tff(exactly_one_truthteller, axiom,

(exactly_one_truthteller
<=> (?[P: $i]: says(P,$true)

& ![P1: $i, P2: $i]:
((says(P1, $true) & says(P2, $true))
=> P1 = P2)))).

% B said that A said that there is
% exactly one truthteller on the island
tff(b_says, hypothesis,

says(b, says(a, exactly_one_truthteller))).

% C said that what B said is false
tff(c_says, hypothesis, says(c, says(b, $false))).

Figure 6.8. Who is the truthteller?

let expressions. TFX is useful for (at least) concisely expressing problems
coming from program analysis, and translated from more expressive logics.

Now that the syntax is settled, ATP system developers will be able
to implement the new language features. It is already apparent from the
SMT community that these are useful features, and systems that can
already parse and reason using the SMT version 2 language need only
new parsers to implement the features of TFX. In parallel, version v8.0.0
of the TPTP will include problems that use TFX, and the automated
reasoning community is invited to submit problems for inclusion in TPTP.
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